WoundCare : Personalized wo
und treatment consultant dr
iven by YOLO11l Al image re

cognition and Deepseek Rl

Group Members: FONG KUN FAI, ZENG QIAO HUI
Advising Teacher: Mr. HO 10 FAI
School: Fong Chong School of Taipa, Macao SAR CHINA
Email Address: roy24245@icloud.com

mailto:roy24245@icloud.com

Table of Contents

I. SCENE ANALYSIS

(A) INVESTIGATION AND ANALYSIS PROCESS
(B) LITERATURE REVIEW OF SURVEY RESEARCH

Il. PROJECT PROPOSAL

(A) KEY INNOVATION
(B) DESIGN CONCEPT AND IMPLEMENTATION PLAN
(C) AI MODEL TRAINING

(7) Training Data Collection and Compilation
2) Model Training
(D) APPLICATION PROGRAM
(E) PRODUCT ADVANTAGES
TIT. INNOVATIVE FEATURES

(a) Key Innovation Points
(b) Process and Program code

IV. PROJECT IMPLEMENTATION PROCESS

(A) DATASET
(B) MODEL TRAINING
(C) APPLICATION DEPLOYMENT

V. PROJECT OUTCOMES

(A) MODEL PERFORMANCE

(B) APPLICATION PROGRAM
VI. PROJECT TESTING RESULTS
VIl. CONCLUSION AND FUTURE PROSPECTS
IX. APPENDIX

(A) KEYWORDS

(B) REFERENCES

oy y & L i

10

11

11
11

33

33
34
35

35

35
38

39

39

40

40
41

[. Scene Analysis

(a) Investigation and Analysis Process

According to survey data from the Hong Kong Department of Health, injuries in dail
y life are highly prevalent. Incidents of injury frequently occur in a variety of
settings, including homes, streets, commercial establishments, and sports venues.
In situations where there are no medical professionals or individuals with adequat
e medical knowledge present, there is a significant risk of improper wound managem
ent. Failure to treat wounds correctly and promptly can lead to serious health con
sequences, such as sepsis or tetanus. This issue is particularly acute in regions
with limited access to medical resources, where the probability of improper wound
care is even higher. Therefore, the presence of a wound care assistant is especial

ly crucial in such circumstances.

(b) Literature Review of Survey Research

In recent years, traumatic injuries have become a significant issue in the field o
f global public health. Among these, falls (39.4%), sprains (26.2%), and contusion
s (13.3%) constitute the primary causes of injury . Notably, 27.4% of injuries occ
ur in the home environment, and the uneven distribution of medical resources expos
es economical ly disadvantaged regions to a higher risk of wound-related complicati
ons, including infection, delayed healing, and even systemic threats such as sepsi
s . Against this backdrop, the development of intelligent wound assessment technol
ogies is crucial for enhancing diagnostic efficiency and reducing the burden on he

althcare systems.

Traditional clinical assessment relies on visual inspection combined with standard
ized scales, supplemented by digital planar measurements, alginate casting, and bi
ochemical testing . However, these methods exhibit significant limitations: first,
contact—based measurements may disrupt the wound microenvironment and increase the
risk of cross—infection; second, manual interpretation is susceptible to subjectiv
e bias, especially when quantifying parameters such as exudate volume, necrotic ti
ssue proportion, and granulation maturity in complex wounds. Studies have shown th
at wound area measurements based solely on visual assessment can have error rates

of 15% - 20%, and are insufficiently sensitive to deep tissue injuries

Image analysis systems based on convolutional neural networks (CNNs) have enabled
the automated extraction and classification of wound characteristics. For example,

a multimodal imaging integration system released in 2024 combines color imaging, t

hermal imaging, and 3D depth sensing data. Utilizing a residual network (ResNet) a
rchitecture, it extracts 136 characteristic parameters, including wound edges, exu
date distribution, and peripheral skin temperature gradients . In clinical trials,
this system demonstrated a wound staging accuracy rate of 92.3%, representing a 37

percentage point improvement over traditional methods

In the domain of area measurement, a laser—assisted deep learning model developed
in 2022 innovatively integrated prior two—dimensional graphic calibration techniqu
es. By establishing a nonlinear regression model between pixel density and shootin
g height, the system achieved wound area measurement errors of less than 2.5% with
out the need for reference objects, and was able to transmit data in real time to
electronic medical record systems . Notably, this technology successfully overcome
s measurement deviations caused by perspective distortion in curved wounds, which

is particularly important for the accurate assessment of wounds on |imbs

Prospective studies on postoperative incision healing monitoring have shown that A
| systems can identify 87.6% of potential infection cases 3 -5 days in advance. Th
is is achieved by analyzing changes in microvascular density around the incision
(AMVD 15%) and abnormalities in epidermal growth factor concentration gradients
(p<0.01), enabling early warning . In resource—limited settings, mobile terminals
equipped with this technology have increased the correct wound management rate amo
ng primary healthcare workers from 58.2% to 89.7%, while reducing the average asse

ssment time from 23 minutes to 4.5 minutes

Current technological bottlenecks focus on optimizing multimodal data fusion algor
ithms, particularly in effectively integrating near—infrared spectral tissue oxyge
nation data with visible light image features . The latest research in 2025 has at
tempted to introduce graph neural networks (GNNs) to establish dynamic models of t
he wound microenvironment, enabling prediction of healing trends within 72 hours

(R? = 0.89). Furthermore, the development of embedded medical devices compliant wi
th 1S0-13485 standards, the establishment of cross—institutional wound image datab
ases, and the refinement of FDA/CE certification processes will be key breakthroug

hs for the commercialization of these technologies

LIDAR sensors, by emitting near—infrared laser pulses and receiving their reflecte
d signals, can accurately measure the three—dimensional spatial distance of target
objects, generating high—-density point cloud data. Compared to traditional 2D imag
e measurement, LIDAR technology overcomes the |imitations of planar imaging, enabl
ing precise capture of wound depth information and three—dimensional contours. Thi

s is especially suitable for measuring irregular and curved surface wounds

ll. Project Proposal

s e ili Use pre-trained model to identify the Push wound category and treatment
User enters appllcatlon UtI|IZeFi Camera to capture p fy gory
picture of wound type of wounds method to user

/

()

iEeH0
HEELEEA

fBRaE @

\Credilihnps:// i khil-rao-20/yolov11-explained-next-level-object-detec h-enhanced-speed-and-accuracy-2dbe2d376{71

{AOzER
5

e

(a) Key Innovation

The project is divided into a mobile application and a physical device, both offer
ing similar functionalities. First, the camera is used to capture images of the wo
und. The wound model, trained with YOLO v11, identifies the wound and provides app
ropriate treatment recommendations in either voice or text format based on the wou
nd type. The application is deeply integrated with DeepSeek, allowing users to int
eract with the "e—Heal" chatbot while connected to the internet. Users can inquire
about wound types, wound care methods, or other related questions. Based on the us
er’ s specific situation, the system conducts wound assessments and offers more de

tailed diagnostic and treatment suggestions.

(b) Design Concept and Implementation Plan

The project is an Al image recognition—driven personalized wound management consul
tant. The entire solution consists of mobile application. The mobile version is an

application that delivers results in text format.

(c) AI Model Training

Preparing xgﬁ.??g:i;:;g:s Train and optimize
Data and labeling —> —— Create Dataset — Model Initialization f—3 Model based on 3 Model Deployment

and generate performance
augmented images

Me
= — — — B — | |
= 4 5
- i

d-accuracy-2dbe2d376{71

E o)

Credit : https; 20/yolov1-explained-next-level-object detect

The development process begins with the selection of an appropriate pre-trained model and preparation of a
clearly annotated wound image dataset. Data augmentation techniques are employed to enhance the model's
generalization capabilities. Subsequently, the final classification layer is removed and new layers are added
to adapt the model specifically for wound classification tasks, while certain layers are frozen to preserve the
pre-trained weights. Following model training, performance 1s evaluated on a validation dataset to ensure ac
curate 1dentification of various wound types. Finally, the model is deployed to the application, enabling real
-time classification functionality

(1) Training Data Collection and Compilation

Due to the challenges in acquiring wound-related data in real-world environments, our projec
t employs a diversified data collection strategy. Initially, we gathered relevant wound imagery
through public internet channels, including existing public datasets and search engine querie
s, to conduct supplementary data collection. Concurrently, this research collaborated with ou
r school's medical staff to collect wound photographs from students and faculty members wh
o sustained injuries, with appropriate consent, thereby establishing a proprietary wound imag

e dataset specific to this project.

Currently, we have assembled 7,668 original wound images, categorized according to six wo
und types plus normal skin classification. Considering the optimal input dimensions of 640x%6
40 pixels for the YOLO11 model, all data has been standardized to these dimensions to enh

ance training efficiency and effectiveness.

To further improve the model's accuracy and generalization capabilities, we implemented var

ious data augmentation techniques, including:

e Angle adjustments (range: -15° to +15°)
e Horizontal and vertical flips
e Brightness adjustments (amplitude: £15%)

e Addition of Gaussian noise (standard deviation 0.1 pixel)

Following these data augmentation procedures, the dataset expanded from the original 7,66
8 images to 45,271 images, significantly enhancing the model's ability to capture sample feat

ures and overall performance during the training process.

(2)Model Training

Given our project's high requirements for both accuracy and speed in wound recognition and
detection, we selected YOLO11 as the core model. YOLO11 offers excellent object detection
precision and efficient inference speed, effectively meeting the dual requirements of real-tim

e performance and accuracy necessary for clinical wound image analysis.

YOLO11 surpasses previous generations of YOLO series models in architectural innovation,
performance enhancement, and application flexibility. Its efficient feature extraction, optimize
d inference speed, and multi-task support capabilities make it one of the preferred models in

the current field of image recognition.

YOLO11 incorporates multiple optimizations in its network architecture. Both the Backbone a
nd Neck networks have been redesigned, significantly enhancing feature extraction capabiliti
es. Specifically, YOLO11 replaces the C2f structure from previous generations with C3K2 m
odules, strengthening the ability to capture image details. Additionally, the model introduces
a C2PSA attention mechanism after the SPPF (Spatial Pyramid Pooling-Fast) module, furthe

r improving perception and selectivity of key visual information. The detection head section o

ptimizes the convolutional structure, enhancing inference efficiency. These structural innovat
ions make YOLO11's detection performance more robust in multi-object, occlusion, and com

plex scene scenarios.

YOLO11 has achieved significant improvements in model efficiency and inference speed. Ac
cording to official experimental results, YOLO11 maintains or even improves accuracy while
significantly reducing parameter count and computational requirements. For example, the Y
OLO11m model achieves higher mean Average Precision (mAP) on the COCO dataset com
pared to YOLOv8m, with approximately 22% fewer parameters. Furthermore, YOLO11's infe
rence speed is approximately 2% faster than YOLOv10, with particularly notable performanc
e on CPU platforms, demonstrating its potential for application on resource-constrained devi
ces. This high-efficiency, low-latency characteristic is particularly crucial for real-time image

processing and edge computing scenarios.

YOLO11 extends support for various visual tasks, including object detection, instance segme
ntation, keypoint pose estimation, oriented object detection, classification, and object trackin
g. This unified multi-task framework simplifies application development processes and enhan
ces the model's versatility and scalability. YOLO11 also offers multiple model scales (such a
s nano, small, medium, large, xlarge), allowing users to select appropriate model weights ac

cording to actual requirements, enabling flexible trade-offs between speed and precision.

Model Input Siz mMAPval50- CPU Inference L GPUInferencel Parameters FLOPs(B)

95

e atency (ms) atency (ms, T4)

(M)

YOLOlIn | 640 39.5 56.1 1.5 2.6 6.5

YOLOl11s | 640 47.0 90.0 2.5 94 21.5

YOLOlIm | 640 515 183.2 4.7 20.1 68.0

YOLOI11l | 640 534 238.6 6.2 25.3 86.9

YOLOl1x | 640 54.7 462.8 11.3 56.9 194.9

Value
Val

‘‘‘‘‘‘‘

Model Model

Based on the comprehensive performance evaluation of the YOLO11 series models (as illust
rated in the above graphs), this research conducted model selection tailored to the specific r
equirements of wound detection tasks. After weighing key indicators of computational efficie
ncy against detection accuracy, the YOLO11l model was ultimately selected as the core arch

itecture.

(d) Application Program

Operational Flow:

Upon first launching the application, the system requests camera, notification, an
d file access permissions. Once in the mobile application, users select their pref
erred language and position the smartphone camera toward the wound. By pressing th
e "Capture Scan" button or uploading an existing photo, users receive a textual id
entification of the wound type along with appropriate treatment methods within app

roximately 1.5 seconds

Compatibility:
The application is compatible with both i0S and Android operating systems.

Model Loading Architecture:

i0S application: The model loads when the user opens the application

Android application: The model loads after the user captures a photograph

Deve lopment Languages:

i0S version is compiled using Swift

Android version is compiled using Kotlin

Advanced Integration:

The mobile version features deep integration with DeepSeek technology:

In connected status, users can access the "e—Heal" chatroom via button pres
s to inquire about wound types, treatment methods, or other relevant questi
ons, providing services more tailored to user needs

While online, users can enter the wound assessment section and select optio
ns that match their condition to receive more detailed wound diagnosis and

treatment recommendations

Severity Measurement Capability:

On i0S devices equipped with LiDAR sensors, the application leverages distance det

ection data provided through ARKit to calculate wound surface area. This measureme

nt helps determine wound severity based on size parameters

(e) Product Advantages

User—-Friendly Interface (single—click operation)

Rapid Processing (approximately 1.5 seconds loading time after image capt
ure)

High Accuracy (wound detection average accuracy rate of [value])

Offline Functionality (both the application and physical device can opera
te without internet connectivity, allowing for use in various environments)
Enhanced Online Capabilities (when connected to the internet, the i0S ver
sion integrates with DeepSeek to provide comprehensive wound assessment and
Al chatroom functionality, delivering more detailed wound diagnosis and tre

atment recommendations)

[II. Innovative Features
(a) Key Innovation Points

o Al-Powered Recognition Technology for efficient identification of wound typ
es

e Pre—trained wound recognition model using the advanced YOLO11 architecture

o Intelligent medical device for wound detection and analysis

e Solution for underserved communities with |imited access to medical resourc
es

o Deep integration with DeepSeek as a virtual physician, enhancing user asses
sment of wound conditions

o LiDAR sensor technology for precise wound area calculation through distance

measurement

(b) Process and Program code

(1) Process Overview

I. User Operation (ContentView. swift):
i User taps the "Photo Scan" button.
ii. ContentView internally calls the capturelmage() method.
II. TImage Capture (CameraManager.swift):
i. ContentView.capturelmage() calls cameraManager.capturePhoto { imag
e, error in ... }.

ii. CameraManager.capturePhoto(): Uses the capturePhoto(with:delegat
¢) method of an AVCapturePhotoOutput instance to take a photo.

iii. The captured Ul Image (or error) is returned asynchronously via the photoOutput(_:d
1dFinishProcessingPhoto:error:) delegate method of AVCapturePhotoCap
tureDelegate.

1. Image Classification (ContentView.swift ->WoundClassifier.swift):
i. ContentView receives the Ul Image in the callback of cameraManager.capturePh
oto.

ii. Assigns the captured image to @State var capturedlImage.

iii. Callsthe classifier.classify(image) method, passing the image to WoundClas
sifier for analysis.

iv. WoundClassifier.classify(image: Ullmage):

1. Internally, the image is first preprocessed: resized to the model's expected input size

(e.g., 640x640), letterboxed to maintain aspect ratio, and then converted to CVP1xe
|Buffer.

2. Creates a VNCoreMLReques t using a preloaded Core ML model (YOLOVS).

3. Creates a VWNImageReques tHandler and performs model inference using hand!
er.perform([request]).

WoundClassifier.processYOLOResults(request:error:) (as a callback for

VNCoreMLReques t):

1. Parses the raw output of the model (usually a multi-dimensional array).
Tterates through the predictions, extracting the bounding box (box), confidence, and
class index for each detected object.

3. Converts class indices to human-readable class names (e.g., "Abrasion", "Hematoma
".

4. Selects the detection with the highest confidence from all detections above the confi
dence threshold as bestDetection.

5. Updates @Publ i shed properties such as self.classification, self.conf
idence, and self.bestDetection.

6. Finally, calls the self.onClassificationComplete?(self.classificat
1on, self.confidence) closure to notify observers (usually ContentView) t
hat classification 1s complete.

V. Result Display and History (ContentView. swift):

iv.

InContentView, the classifier.onClassificationComplete callback is trigg
ered (set up within the captureImage method).

In this callback, historyManager.saveStandardScan(image:capturedImag
e, classification: ..., confidence: ...) iscalled to save the result to hist
ory.

Simultaneously, a local notification sendNoti1fication(...) is sent to inform the us
er of the identification result.

Sets@State var showingResult = true, which triggers the display of the Resul
tView card.

V. Resulthw(ResultVlew swift):

Resul tView is presented, receiving data such as capturedImage and classifier
(as an @bservedObject).

Inits .onAppear or after listening for the ClassificationComplete notification vi
aNotificationCenter, it calls the internal getWoundTreatmentAdvice(wound
Type: classifier.classification) method.
ResultView.getWoundTreatmentAdvice() calls deepseekService.getWoun
dTreatmentAdvice(woundType: ..., language: languageManager.curr
entLanguage, ...) toasynchronously fetch Al-powered smart suggestions.

Resul tView internally uses classifier.drawAnnotations(on: i1mage) todra
w the bounding box and label of bes tDetection on the passed image, and then display
s this annotated 1mage.

It also displays the wound type and local treatment suggestions obtained from classifi
er, as well as Al suggestions from deepseekService.

(2) Key Code

The following Swift code provides a more detailed look at the , specifically expanding th
e method to 1llustrate how raw model output from a YOLOvVE model might be parse

d. It includes placeholder logic for parsing the tensor and mapping class indices to labels.

“swift

WoundClassifier: ObservableObject {
classification: String = "N/A"
confidence: Float = 0.0
bestDetection: WoundDetection? =

onClassificationComplete: ((_ classification: String, _ confidence: Float) -> Void)?
yoloRequest: VNCoreMLRequest?

classify(_ image: Ullmage) {
guard let yoloRequest = self.yoloRequest else {
print("YOLO request not initialized.")
return
}
guard let pixelBuffer = image.toCVPixelBuffer(width: 640, height: 640) else {
print("Failed to convert Ullmage to CVPixelBuffer.")
DispatchQueue.main.async {
.classification = "Preprocessing Failed"
.confidence = 0.0
.bestDetection =
.onClassificationComplete?("Preprocessing Failed", 0.0)
}

return

handler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, orientation: .up)
do {
try handler.perform([yoloRequest])

} catch {
print("Failed to perform Vision request: \(error.localizedDescription)")
DispatchQueue.main.async {
.classification = "Inference Error"
.confidence = 0.0
.bestDetection =
.onClassificationComplete?("Inference Error", 0.0)

process YOLOResults(_ request: VNRequest, error: Error?) {
guard error == nil else {

print("Vision request failed with error: \(error!.localizedDescription)")
DispatchQueue.main.async {

.classification = "Error"

.confidence = 0.0

.bestDetection =

.onClassificationComplete?("Error”, 0.0)
}

return

if let results = request.results as? [VNRecognizedObjectObservation] {

highestConfidenceObservation: VNRecognizedObjectObservation? =
maxConfidence: Float = 0.0

for observation in results {

if let firstLabel = observation.labels.first, firstLabel.confidence > maxConfidence {
maxConfidence = firstLabel.confidence
highestConfidenceObservation = observation

DispatchQueue.main.async {

if let bestObs = highestConfidenceObservation, let label = bestObs.labels.first {
.classification = label.identifier
.confidence = label.confidence
.bestDetection = WoundDetection(
boundingBox: bestObs.boundingBox,
confidence: label.confidence,
label: label.identifier,
classIndex: 0

)
} else {

.classification = "No Wound Detected"
.confidence = 0.0
.bestDetection =

.onClassificationComplete?(self.classification, self.confidence)

else if let results = request.results as? [VNCoreMLFeatureValueObservation],

outputTensor = results.first?.feature Value.multiArray Value {

detections = parse YOLOv8Output(tensor: outputTensor)

highestConfidence: Float = 0.0
bestOverallDetection: WoundDetection? =

for detection in detections {
if detection.confidence > highestConfidence && detection.confidence > 0.5 {
highestConfidence = detection.confidence
bestOverallDetection = detection

DispatchQueue.main.async {

if let best = bestOverallDetection {
.classification = best.label
.confidence = best.confidence
.bestDetection = best

} else {
.classification = "No Wound Detected"
.confidence = 0.0
.bestDetection =

.onClassificationComplete?(self.classification, self.confidence)
}
} else {

print("Failed to interpret Vision request results. Neither VNRecognizedObjectObservation nor VNCoreMLFeatureValueOb

servation found or parsable.")
DispatchQueue.main.async {
.classification = "Processing Failed"
.confidence = 0.0
.bestDetection =

.onClassificationComplete?("Processing Failed", 0.0)

parse YOLOv&Output(tensor: MLMultiArray) -> [WoundDetection] {

detectedObjects: [WoundDetection] = []

numProposals = tensor.shape[1].intValue
numAttributesPerProposal = tensor.shape[2].intValue
numClasses = numAttributesPerProposal - 5

for 1 1n 0..<numProposals {
basePointer = UnsafeMutableBufferPointer<Float32>(striding: tensor.strides[1].intValue, count: numAttributesPerPropo
sal, UnsafeMutableRawPointer(tensor.dataPointer).advanced(by: 1 * tensor.strides[1].intValue * MemoryLayout<Float32>.stride))

cx = basePointer[0]
[1

]

w = basePointer[2]

h = basePointer[3]
objConfidence = basePointer[4]

cy = basePointer|

if objConfidence < 0.5 { continue }

maxClassProb: Float = 0.0
classIndex: Int = -1

for jin 0..<numClasses {
classProb = basePointer[5+;]
if classProb > maxClassProb {
maxClassProb = classProb
classIndex = j

finalConfidence = objConfidence * maxClassProb
if finalConfidence > 0.5 {

x = CGFloat(cx - w/2)
y = CGFloat(cy - h/2)
boundingBox = CGRect(x: x, y: vy, width: CGFloat(w), height: CGFloat(h))

label = mapClassindexToLabel(classIndex)
detectedObjects.append(WoundDetection(boundingBox: boundingBox, confidence: finalConfidence, label: label, classIn

dex: classIndex))

}

return nms(detections: detectedObjects)

nms(detections: [WoundDetection], iouThreshold: Float = 0.45) -> [WoundDetection] {

return detections

mapClassIndexToLabel(_ index: Int) -> String {
labels = ["Abrasion", "Hematoma", "Laceration”, "Puncture", "Burn"]
if index >= 0 && index < labels.count {
return labels[index]

}

return "Unknown"

imageToCVPixelBuffer(image: Ullmage, width: Int, height: Int) -> CVPixelBuffer? {

return image.toCVPixelBuffer(width: width, height: height)

drawAnnotations(on image: Ullmage, detection: WoundDetection?) -> Ullmage
imageSize = image.size
UlGraphicsBeginlmageContextWithOptions(imageSize, , Image.scale)
image.draw(at: .zero)
guard let context = UIGraphicsGetCurrentContext(), let detection = detection else {
UlGraphicsEndImageContext()

return image

boundingBox = detection.boundingBox

rect = CGRect(

x: boundingBox.origin.x * imageSize.width,

y: boundingBox.origin.y * imageSize.height,
width: boundingBox.width * imageSize.width,
height: boundingBox.height * imageSize.height

context.setStrokeColor(UIColor.red.cgColor)
context.setLineWidth(max(imageSize.width / 200, 2.0))

context.stroke(rect)

text = String(format: "% @: %.2f", detection.label, detection.confidence)
attributes: [NSAttributedString.Key: Any] = [

font: UIFont.systemFont(ofSize: max(imageSize.width / 40, 12.0)),
foregroundColor: UIColor.white,

.backgroundColor: UIColor.red.withAlphaComponent(0.7)

textSize = text.size(withAttributes: attributes)

textRect = CGRect(x: rect.origin.x, y: rect.origin.y - textSize.height - 2, width: textSize.width, height: textSize.height)
text.draw(in: textRect, withAttributes: attributes)

annotatedImage = UIGraphicsGetlmageFromCurrentimageContext()
UlGraphicsEndImageContext()
return annotatedImage ?? image

Ullmage {

toCVPixelBuffer(width: Int, height: Int) -> CVPixelBuffer? {

attrs = [

kCVPixelBufferCGImageCompatibilityKey: kCFBooleanTrue,

kCVPixelBufferCGBitmapContextCompatibilityKey: kCFBooleanTrue
] as CEDictionary

pixelBuffer: CVPixelBuffer?

status = CVPixelBufferCreate(kCFAllocatorDefault, width, height, kCVPixelFormatType_32ARGB, attrs, &pixelBuffer)
guard status == kCVReturnSuccess, let buffer = pixelBuffer else {

return

CVPixelBufferLockBaseAddress(buffer, CVPixelBufferLockFlags(rawValue: 0))
pixelData = CVPixelBufferGetBaseAddress(buffer)

rgbColorSpace = CGColorSpaceCreateDeviceRGB()
guard let context = CGContext(

data: pixelData,

width: width,

height: height,

bitsPerComponent: &,

bytesPerRow: CVPixelBufferGetBytesPerRow(buffer),

space: rgbColorSpace,

bitmapInfo: CGImageAlphalnfo.noneSkipFirst.rawValue
) else {

CVPixelBufferUnlockBase Address(buffer, CVPixelBufferLockFlags(rawValue: 0))

return

context.translateBy(x: 0, y: CGFloat(height))
context.scaleBy(x: 1.0, y: -1.0)
UlGraphicsPushContext(context)

draw(in: CGRect(x: 0, y: 0, width: width, height: height))
UlGraphicsPopContext()

CVPixelBufferUnlockBase Address(buffer, CVPixelBufferLockFlags(rawValue: 0))
return buffer

This function utilizes the LIDAR sensor to measure distance and combines it with image analysis to calculate wound area and asses

S severity.

“ContentView"
User taps the "Enhanced Scan" button (only displayed if LiDAR is available).
Calls “startEnhancedScan()".
“ContentView" -> “EnhancedScanManager

“ContentView.startEnhancedScan():

Sets “showingScanProgress = true® to display the progress UL

Calls “enhancedScanManager.performScan()".
*EnhancedScanManager.performScan()':

Checks for LIDAR support.

Calls “setupARSession()" to start “ARSession” and request depth data.

Starts “startDepthStabilizationProcess()” to stabilize depth readings.

“EnhancedScanManager®
“startDepthStabilizationProcess() : Stabilizes the acquisition of “ARFrame™ and distance using a timer and “takeSingleFrameC
apture’.

After stabilization, calls "captureFrame()’, which in turn calls “processFrame(frame: ARFrame) .
“processFrame():

Gets the image (capturedImage’) and average distance (distanceCopy’) from “ARFrame’.

Calls “updateCameralntrinsics()" to update camera intrinsic parameters.
Instantiates *WoundClassifier” and calls “classifier.classify(image) .
“EnhancedScanManager” + “WoundClassifier®
“WoundClassifier.classify()" follows the same process as the standard scan to find “bestDetection’.

“EnhancedScanManager™ in the “classifier.onClassificationComplete” callback:

* If “bestDetection™ exists:

Calls “classifier.drawAnnotations(on: image)" to generate an annotated image.
Calls “self.calculateArea(boundingBox: bestDetection.box, distance: distanceCopy, ...)" to calculate the area.
Calls “self.assessSeverity(area: areaResult)” to assess severity.
Prepares “EnhancedScanResult .
If “bestDetection™ does not exist, prepares an “EnhancedScanResult” indicating "not detected".
Calls “self.scanCompletion?(.success(finalResult))" or *.failure()".
Calls “self.cleanup()" to stop “ARSession'.
“ContentView"
The callback of “ContentView.startEnhancedScan()" is triggered.
Hides the progress view.
If successful, updates “enhancedScanResult™ and sets “showingEnhancedScanResult = true” to display “EnhancedScanResultV

Calls “historyManager.saveLIDARScan(...)" to save the record.
If failed, displays an error message.
“EnhancedScanResultView

Receives “EnhancedScanResult.

Displays the image (with annotations generated by “EnhancedScanManager™ or drawn by the view itself based on “woundBou
ndingBox").

Displays wound classification, distance, area, and severity.

Displays basic treatment advice, Al suggestions, "e-Consult" button, and "Seek Immediate Help" button.

The “EnhancedScanManager.swift™ snippet below is expanded to demonstrate a more complete, albeit still illustrative, implementati
on for LiDAR-enhanced scanning. It includes:

Basic "ARSession” setup to access depth data and camera frames.

Callbacks for "ARSessionDelegate” to receive frame updates and potentially camera intrinsics.

A more detailed “processFrame” method to convert "ARFrame™'s “capturedImage” to "Ullmage” and initiate classification using t
he “WoundClassifier .

An expanded “handleClassificationCompletion™ callback (triggered by “WoundClassifier') to integrate classification results with
depth information for placeholder area and severity calculations. This highlights where 3D geometry and depth map processing wou
1d occur.

Placeholder functions for “getAverageDepthForBoundingBox', “calculatePhysical AreaFromDetection’, and “assessSeverity™ to u

nderscore the complex calculations and logic required for accurate measurements.
swift

import ARKit
import RealityKit
import Combine
import UIKit

EnhancedScanManager: NSObject, ObservableObject, ARSessionDelegate {
scanProgress: Double = 0.0
currentDepthString: String = "N/A"

annotatedImage: Ullmage?
1sScanning: Bool =

arSession: ARSession?
imageClassifier: WoundClassifier?
cancellables = Set<AnyCancellable>()

currentFrame: ARFrame?
cameralntrinsics: simd_float3x3?
cameraResolution: CGSize?

scanCompletion: ((Result<EnhancedScanResult, Error>) -> Void)?

0 {
0

.imageClassifier = WoundClassifier()

imageClassifier?.$bestDetection
receive(on: DispatchQueue.main)
sink { [] detection in
guard = self, self.isScanning, let detection = detection else { return }

.handleClassificationCompletion(detection: detection)

}

store(in: &cancellables)

performScan(completion: (Result<EnhancedScanResult, Error>) -> Void) {

.scanCompletion = completion
.1sScanning =
.annotatedImage =

guard ARWorldTrackingConfiguration.isSupported else {
completeScan(.failure(ScanError.arNotSupported))

return

arSession = ARSession()
arSession?.delegate =

configuration = ARWorldTrackingConfiguration()
if ARWorldTrackingConfiguration.supportsFrameSemantics(.sceneDepth) {
configuration.frameSemantics.insert(.sceneDepth)

} else {
completeScan(.failure(ScanError.sceneDepthNotSupported))

return

arSession?.run(configuration)

DispatchQueue.main.asyncAfter(deadline: .now() + 1.5) { [
?.captureAndProcessCurrentFrame()

captureAndProcessCurrentFrame() {
guard self.isScanning, let frame = self.currentFrame ?? arSession?.currentFrame else {

.AsScanning {
completeScan(.failure(ScanError.noFrameAvailable))
}
return
}

processFrameForWound(frame: frame)

session(_ session: ARSession, didUpdate frame: ARFrame) {
.currentFrame = frame
.cameralntrinsics = frame.camera.intrinsics
.cameraResolution = frame.camera.imageResolution

sceneDepth = frame.sceneDepth {
depthMap = sceneDepth.depthMap

session(_ session: ARSession, didFailWithError error: Error) {

print("ARSession failed with error: \(error.localizedDescription)")

completeScan(.failure(ScanError.arSessionFailed(error)))

processFrameForWound(frame: ARFrame) {
guard let pixelBuffer = frame.capturedImage else {
completeScan(.failure(ScanError.nolmagelnFrame))

return

cilmage = ClImage(cvPixelBuffer: pixelBuffer)
context = CIContext(options: nil)

guard let cglmage = context.createCGImage(cilmage, from: cilmage.extent) else {
completeScan(.failure(ScanError.imageConversionFailed))

return

capturedUIImage = Ullmage(cglmage: cglmage, scale: 1.0, orientation: .right)
.annotatedImage = capturedUIImage

imageClassifier?.classify(capturedUIlmage)

handleClassificationCompletion(detection: WoundDetection) {
guard self.isScanning,
currentFrame = self.currentFrame,
depthData = currentFrame.sceneDepth,
camlntrinsics = self.cameralntrinsics,
camResolution = self.cameraResolution else {

result = EnhancedScanResult(
annotatedImage: self.annotatedImage ?? Ullmage(),
woundType: detection.label,
confidence: detection.confidence,
distance: nil,
estimatedArea: nil,
severity: "Unknown (incomplete data)",
woundBoundingBox: detection.boundingBox
)
completeScan(.success(result))

return

averageDistance = getAverageDepthForBoundingBox(
detection.boundingBox,

depthMap: depthData.depthMap,
depthConfidenceMap: depthData.confidenceMap,
camera: currentFrame.camera

physicalArea: Float? =
dist = averageDistance {

physicalArea = calculatePhysical AreaFromDetection(

detection: detection,
distanceToWound: dist,

cameralntrinsics: camlIntrinsics,

cameralmageResolution: camResolution

severity = assessSeverity(area: physicalArea, type: detection.label)

if let baselmage = self.annotatedImage {
.annotatedlmage = drawEnhancedAnnotations(on: baselmage, detection: detection, distance: averageDistance, area: phy
sicalArea)

}

finalResult = EnhancedScanResult(
annotatedImage: self.annotatedImage ?? Ullmage(),
woundType: detection.label,
confidence: detection.confidence,
distance: averageDistance,
estimatedArea: physicalArea,
severity: severity,
woundBoundingBox: detection.boundingBox
)

completeScan(.success(finalResult))

getAverageDepthForBoundingBox(_ normalizedBoundingBox: CGRect, depthMap: CVPixelBuffer, depthConfidenc
eMap: CVPixelBuffer?, camera: ARCamera) -> Float? {

depthWidth = CVPixelBufferGetWidth(depthMap)
depthHeight = CVPixelBufferGetHeight(depthMap)

centerX = Int(normalizedBoundingBox.midX * CGFloat(depthWidth))
centerY = Int(normalizedBoundingBox.midY * CGFloat(depthHeight))

guard centerX >= 0 && centerX < depthWidth && centerY >= 0 && centerY < depthHeight else { return nil }

CVPixelBufferLockBaseAddress(depthMap, .readOnly)
defer { CVPixelBufferUnlockBaseAddress(depthMap, .readOnly) }

if let baseAddress = CVPixelBufferGetBaseAddress(depthMap) {
bytesPerRow = CVPixelBufferGetBytesPerRow(depthMap)

buffer = baseAddress.assumingMemoryBound(to: Float32.self)
depthValue = buffer[centerY * (bytesPerRow / MemoryLayout<Float32>.stride) + centerX]
return depthValue.isNaN ? nil : depthValue
}

return

calculatePhysical AreaFromDetection(detection: WoundDetection, distanceToWound: Float, cameralntrinsics: simd_
float3x3, cameralmageResolution: CGSize) -> Float? {

fx = cameralntrinsics[0,0]
fy = cameralntrinsics[1,1]

boxWidthInPixels = detection.boundingBox.width * cameralmageResolution.width
boxHeightInPixels = detection.boundingBox.height * cameralmageResolution.height

physicalWidth = (Float(box WidthInPixels) / fx) * distanceToWound
physicalHeight = (Float(boxHeightInPixels) / fy) * distanceToWound

arealnSquareMeters = physicalWidth * physicalHeight
return arealnSquareMeters * 10000

assessSeverity(area: Float?, type: String) -> String {

guard let area = area else { return "Unknown (area not calculated)" }

if area > 50.0 { return "High" }
if area > 10.0 { return "Medium" }
if area > 0 { return "Low" }

return "Not classified"

drawEnhancedAnnotations(on image: Ullmage, detection: WoundDetection, distance: Float?, area: Float?) -> Ullma

UlGraphicsBeginlmageContextWithOptions(image.size, , Image.scale)

image.draw(at: .zero)

guard let context = UIGraphicsGetCurrentContext() else {
UlGraphicsEndImageContext()
return image

imageSize = image.size

boundingBox = detection.boundingBox
rect = CGRect(

x: boundingBox.origin.x * imageSize.width,

y: boundingBox.origin.y * imageSize.height,
width: boundingBox.width * imageSize.width,
height: boundingBox.height * imageSize.height

context.setStrokeColor(UIColor.cyan.cgColor)
context.setLineWidth(max(imageSize.width / 180, 2.5))
context.stroke(rect)

textLines: [String] =[]
textLines.append(String(format: "% @: %.2f", detection.label, detection.confidence))
if let d = distance { textLines.append(String(format: "Dist: %.2f m", d)) }
if let a = area { textLines.append(String(format: "Area: %.1f cm*", a)) }

text = textLines. joined(separator: "\n")

attributes: [NSAttributedString.Key: Any] = [
font: UIFont.systemFont(ofSize: max(imageSize.width / 45, 10.0)),
foregroundColor: UIColor.black,

.backgroundColor: UIColor.cyan.withAlphaComponent(0.7)

paragraphStyle = NSMutableParagraphStyle()
paragraphStyle.alignment = .left

final Attributes = attributes.merging([.paragraphStyle: paragraphStyle], uniquingKeysWith: { (current, _) in current })

textSize = text.boundingRect(with: CGSize(width: imageSize.width, height: .greatestFiniteMagnitude),
options: .usesLineFragmentOrigin,
attributes: finalAttributes,
context: nil).size

textRectY = rect.origin.y - textSize.height - 5
if textRectY < 0 { textRectY = rect.origin.y + rect.height + 5 }
if textRectY + textSize.height > imageSize.height { textRectY = imageSize.height - textSize.height - 5}

textRect = CGRect(x: rect.origin.x, y: textRectY, width: textSize.width + 10, height: textSize.height + 5)

backgroundPath = UIBezierPath(roundedRect: textRect, cornerRadius: 5)
(finalAttributes[.backgroundColor] as? UIColor)?.setFill()
backgroundPath.fill()

(text as NSString).draw(in: textRect.insetBy(dx: 5, dy: 2.5), withAttributes: final Attributes)
annotatedImage = UIGraphicsGetlmageFromCurrentimageContext()

UlGraphicsEndImageContext()
return annotatedImage ?? image

completeScan(_ result: Result<EnhancedScanResult, Error>) {

.1sScanning =
arSession?.pause()

scanCompletion?(result)
scanCompletion =

stopScan() {
.asScanning {
completeScan(.failure(ScanError.cancelled))

ScanError: Error, LocalizedError {
arNotSupported
lidarNotSupported
sceneDepthNotSupported
arSessionFailed(Error)
noFrameAvailable
nolmagelnFrame
imageConversionFailed
classificationFailed
depthProcessingFailed

cancelled

errorDescription: String? {
switch {
> .arNotSupported: return "ARKit 1S not supported on this device."
se lidarNotSupported: return "LiIDAR sensor 18 not available or supported."”
> .sceneDepthNotSupported: return "Scene depth 1s not supported on this device/OS version."
> arSessionFailed(let err): return "AR session failed: \(err.localizedDescription)"
> .noFrameAvailable: return "No AR frame was available for processing."
> nolmagelnFrame: return "The AR frame contained no image data."
> imageConversionFailed: return "Failed to convert AR frame image."
> classificationFailed: return "Wound classification failed."
> .depthProcessingFailed: return "Failed to pro depth data for measurements."
> cancelled: return "Scan was cancelled by the user."

This function allows users to have a more in-depth conversation with the Al about the current wound after viewing the scan results.

“ResultView" or “EnhancedScanResultView"
User taps the "e-Consult" button on the result card.
The “showingChat® state of the corresponding view becomes “true .
“ResultView'/ EnhancedScanResultView" -> “ChatView"
Presents "ChatView" using the ".sheet” modifier.
Passes the current “woundType’, “deepseekService™ instance, and the “$showingChat® binding to "ChatView'.
Injects “languageManager at the same time.
“ChatView"
“ChatView.onAppear :
Generates an initial prompt message based on the incoming “woundType” (e.g., "My wound type is XX, please give me det
ailed treatment advice.").
Calls “sendInitialMessage()".
*ChatView" -> “DeepseekService®
“ChatView.sendMessage()™ or “sendInitialMessage() :
Adds the user input or initial message to the local “messages” list.

Sets “1sLoading = true’.

LY
k

Calls “deepseekService.sendChatMessage(message: ..., language: languageManager.currentLanguage, ...)".

“DeepseekService.sendChatMessage()
Adds the user message to the internal “chatHistory".

Constructs a request body containing the and a system prompt with

Sends a request to the Deepseek API.
“DeepseckService® -> “ChatView"
Callback of “DeepseekService.sendChatMessage():
If successful, adds the Al's reply to “chatHistory .
Returns the Al's reply via “completion'.
“ChatView receives the Al reply:
Sets “isLoading = false’.
Adds the Al reply to the local “messages™ list.
“ChatBubble" is responsible for rendering the message; if the Al reply contains Markdown, the “Text™ view will attempt to
render it.
6. “ChatView

* Users can type new questions in the input box and send them, repeating steps 4 and 5.
* The chat card height can be adjusted by sliding, or the chat can be closed by tapping the close button.

The following Swift code provides a more detailed illustration of the “ChatView" structure and its interaction with the “DeepseekSe
rvice” for handling the Al consultation. It includes state management for messages, user input, Ul elements for displaying the chat,
and logic for sending/receiving messages. This example uses SwiftUL

swift

import SwiftUI

ChatMessage: Identifiable, Equatable {
id = UUID()

text: String

isUser: Bool

1sLoadingIndicator: Bool =

ChatBubble: View {
message: ChatMessage

body: some View {
HStack {
if message.isUser { Spacer(minLength: 20) }

if message.isLoadingIndicator {
ProgressView()
.padding(10)
.background(Color(UIColor.systemGray5))
.clipShape(RoundedRectangle(cornerRadius: 10))
} else {
Text(message.text)
.padding(12)
.background(message.isUser ? Color.blue.opacity(0.9) : Color(UIColor.systemGray4))
foregroundColor(message.isUser ? .white : .primary)
.clipShape(RoundedRectangle(cornerRadius: 12))
textSelection(.enabled)

if 'message.isUser { Spacer(minLength: 20) }
}
.padding(.horizontal, 10)

.padding(.vertical, 4)

ChatView: View {
showingChat: Bool
woundType: String
deepseekService: DeepseekService
languageManager: LanguageManager
userInput: String =""

messages: [ChatMessage] = []

isTextFieldFocused: Bool

body: some View {
NavigationView {
VStack(spacing: 0) {
ScrollViewReader { scrollViewProxy in
ScrollView {
LazyVStack(spacing: 8) {
ForEach(messages) { msg in
ChatBubble(message: msg)
1d(msg.1d)

}
.padding(.top, 10)
}

.onChange(of: messages) { _ in

if let lastMessage = messages.last {
withAnimation {
scrollViewProxy.scrollTo(lastMessage.id, anchor: .bottom)

}
.onTapGesture {
1sTextFieldFocused =

HStack(spacing: 12) {

TextField("Ask about \(woundType)...", text: $userInput, axis: .vertical)
JineLimit(1...5)
.padding(Edgelnsets(top: 8, leading: 12, bottom: 8, trailing: 12))
background(Color(UIColor.systemGray6))
.clipShape(RoundedRectangle(cornerRadius: 20))
focused($isTextFieldFocused)
.onSubmit(sendMessage)

Button(action: sendMessage) {
Image(systemName: "arrow.up.circle.fill")
resizable()
frame(width: 32, height: 32)
foregroundColor(userInput.trimmingCharacters(in: .whitespacesAndNewlines).isSEmpty ? .gray : .blue)

}

.disabled(userInput.trimmingCharacters(in: .whitespacesAndNewlines).isEmpty |l deepseekService.isLoading)

}
.padding()
.background(.thinMaterial)
!
.navigationTitle("AI Consultation")
.navigationBarTitleDisplayMode(.inline)
.toolbar {
Toolbarltem(placement: .navigationBarTrailing) {
Button("Done") {
showingChat =

.onAppear(perform: sendInitialMessage)

alert("Error", isPresented: $deepseekService.hasError, presenting: deepseekService.errorMessage) { _ in
Button("OK") { deepseekService.clearError() }

} message: { errorMessage in
Text(errorMessage)

sendInitialMessage() {

guard messages.iSEmpty else { return }

mitialPrompt = "I have a \(woundType). Can you provide detailed treatment advice, potential complications to watch for, a
nd when I should see a doctor?"

initialMessage = ChatMessage(text: initialPrompt, isUser:
messages.append(initialMessage)

thinkingMessageld = UUID()

messages.append(ChatMessage(id: thinkingMessageld, text: "", isUser: , isLoadingIndicator:)

historyForService = messages.filter { !$0.1sLoadingIndicator }
deepseekService.sendChatMessage(
message: initialPrompt,
language: languageManager.currentLanguage.raw Value,
history: historyForService.map { $0.text }
) { replyText, error in

messages.removeAll { $0.1d == thinkingMessageld && $0.1sLoadingIndicator }
if let error = error {
errorMessage = ChatMessage(text: "Sorry, I encountered an error:

error.localizedDescription)"”, isUser:
messages.append(errorMessage)

return
!
if let replyText = replyText, !replyText.iSEmpty {
aiMessage = ChatMessage(text: replyText, isUser:
messages.append(aiMessage)
} else if error == nil {
emptyReplyMessage = ChatMessage(text: "I didn't receive a response. Please try asking again.", isUser:
messages.append(emptyReplyMessage)

sendMessage() {
trimmedInput = userInput.trimmingCharacters(in: .whitespacesAndNewlines)
guard !trimmedInput.isEmpty else { return }

userMessage = ChatMessage(text: trimmedInput, isUser:
messages.append(userMessage)

textToSend = userInput
userInput = ""

thinkingMessageld = UUID()
messages.append(ChatMessage(id: thinkingMessageld, text:

"n

, isUser: , isLoadingIndicator:)

historyForService = messages.filter { !$0.isLoadingIndicator && $0.1d = thinkingMessageld }

deepseekService.sendChatMessage(
message: textToSend,
language: languageManager.currentLanguage.rawValue,
history: historyForService.map { $0.text }
) { replyText, error in
messages.removeAll { $0.1d == thinkingMessageld && $0.1sLoadingIndicator }

if let error = error {
errorMessage = ChatMessage(text: "Error: \(error.localizedDescription)'

'

, isUser:
messages.append(errorMessage)
return
}
if let replyText = replyText, !replyText.iSEmpty {
aiMessage = ChatMessage(text: replyText, isUser:
messages.append(aiMessage)
} else if error == nil {

emptyReplyMessage = ChatMessage(text: "I received an empty response. Could you rephrase or try again?", isUser:

messages.append(emptyReplyMessage)

}
1sTextFieldFocused =

I\VV. Project Implementation Process

(a) Dataset

The wound classification test dataset comprises 7,686 independently collected wound image
s, encompassing five distinct categories: normal skin, lacerations, incisions, abrasions, and h
ematomas. These images simulate authentic clinical scenarios, incorporating variations in lig
hting conditions, background noise, and diverse imaging angles to enhance model robustnes

s. Following the implementation of data augmentation techniques, the dataset was significan

tly expanded from the original 7,668 images to 45,271 images, substantially enhancing the

model's feature extraction capabilities and overall performance during the training process.

(b) Model Training

WoundCare model, based on the YOLO11I architecture, was trained on the NVIDIA
A100 Tensor Core GPU platform. This training process utilized 7,686 meticulously a
nnotated medical image samples and underwent 100 training epoch iterations, resulti

ng in significant enhancement of wound detection accuracy.

The model training parameters were configured as follows:
« Batch size (batch): -1 (Auto-batch sizing based on GPU memory capacity)
« Cache: None
o Device: None
o Training epochs: 100
« Image size (imgsz): 640
» Patience value: 100

¢ Time: None

The NVIDIA A100 platform was selected for its superior deep learning performance c
apabilities, which according to industry benchmarks, provides significantly faster train
ing speeds compared to previous generation hardware. The auto-batch sizing param
eter (-1) allowed the system to automatically determine the optimal batch size based
on the available GPU resources, maximizing computational efficiency while preventin

g memory overflow issues.

(c) Application Deployment

To ensure optimal performance and user experience across both iOS and Android mobile op
erating systems, our team implemented a platform-native development strategy. Given the si
gnificant differences between iOS and Android system architectures, development kits (SDK
s), and application programming interfaces (APIs)—such as Apple's Core ML versus the pre
dominantly used TensorFlow Lite on Android—platform-specific development became essen
tial. Specifically, the iOS application was developed using Apple's official Swift programming
language and native API suite, while the Android application utilized Google's supported Kotl

in programming language.

To further enhance the user experience, the application integrates the Deepseek large langu
age model via API. After the system identifies a wound type through the application, this info
rmation is sent as a request to the Deepseek API to generate relevant professional wound ¢

are recommendations and content.

For the iOS platform, we developed a specialized wound area and severity assessment feat
ure based on LiDAR technology. This functionality utilizes the LiDAR sensor built into select i
Phone and iPad devices, in conjunction with the system-level ARKit framework, to perform hi
gh-precision distance detection. By combining the depth data with the wound bounding box

dimensions detected by the YOLO model in the image, the system can calculate the estimat

ed wound area in the physical world, thereby assisting in determining wound severity.

V. Project Outcomes

(a) Model Performance

The data in the chart below represents the model's overall performance, where the
X-axis indicatesthe total epochs of the model. An epoch refers to the state in the
model| training process where the algorithm has completely used every data point in

the dataset. The Y—axis represents the maximum values

Overall performance of WoundCare Beta Model

03000

08000

07000

05000

0.4000

03000

0.2000

01000

mAP50 is the mean Average Precision calculated using a threshold value of 0.5 to m
easure the overlap degree between detection boxes and label boxes

Recall is a metric that measures the model's prediction capability, particularly i
ts ability to identify relevant instances

Precision is the ratio of correctly predicted positive samples to the total number
of samples predicted as positive.

mAP50(B) Precision [l Recall

0.8000 , T aya =
Ak WWMV R A
| | '

0.6000 f |
|

0.4000

0.2000

0.0000
OD0 \H D AN D oD b D P D > @A AD X o D

"Box loss" typically refers to the overall loss of boundary boxes, encompassing ce
nter position (x,y) and size (width, height). In YOLO11, this is usually calculate
d using loU (Intersection over Union)-based loss functions, such as CloU or SloU,
to measure the degree of overlap between predicted bounding boxes and ground truth
bounding boxes. This component of the loss function ensures the model can correctl
y localize and adjust the size of objects.

box loss

"Class loss" refers to the loss component associated with classification, which is
responsible for predicting the category to which each detected object belongs. Thi
s loss is typically calculated using cross—entropy loss, measuring the difference

between predicted class probabilities and actual class labels. This component is ¢
rucial for identifying different types of objects in images (such as cars, pedestr
ians, etc.).

class loss

1.400
1.200
1.000

p—
J.0C osz val clzlo

"dfl loss" refers to Distribution Focal Loss, which is used in YOLO11 for precise

prediction of bounding box center coordinates. Unlike traditional methods, DFL con
siders the potential distribution of center positions, particularly addressing sce
narios involving small objects or size variations, helping the model better handle
challenging detection situations. This is an advanced loss function designed to im

prove the prediction accuracy of center positions

1.600
1.400

1.200

(b) Application Program

2208 @
O

o mEGO
MEEEEA

Main Screen

e "o

b

LiDARSIBA o

RO%RE

History Scan Result

HO%RE

oiEpzE

[rer—
HYERRMMROLE . HTATEE
e

D
RERECRAA AR ORRS
£

RAERARIARK - GETEHGR
» . BamEEaRa

i
“e‘}é” /a8

Al Suggestion Medical
uggesti Enquiry

GORY (o, B W0
soRR

wawn

sonm sm

me s se me me B

raEE 010

wxan
£

Wound Self-
assessment

Based on the current trends in wound assessment applications, the iOS version of our application feat
ures a comprehensive user interface designed for optimal clinical functionality while maintaining user-f
riendly navigation. The interface incorporates intuitive design elements similar to leading medical appli

cations in the wound care domain, with specialized components for wound image capture, analysis, a

iOS Version Overall Interface

nd treatment recommendation display.

The application interface prioritizes accessibility and clear information presentation, following establish
ed patterns in successful medical imaging applications. Unlike many existing solutions that focus excl
usively on healthcare practitioners, our interface is designed to be accessible to both medical professi

onals and general users, particularly in situations where immediate professional care may not be avail

able.

MR OMERER

Main Screen

FRigR &
foxe
i
ﬂi)}iﬁﬁEF
&P
gD
History Scan Result

054
m o1 MUETHE

it -

o=, RawmSE (EsETER)

o L =
e

B ————

=R e

>V manw) smnnan s

o i ——

R

o mmso

Earama.

P
“ei’a‘” [S7=]

Al Suggestion Medical
88 Enquiry

OB

oz
BORT (. B W)
e

Wound Self-
assessment

The Android main interface design aims to provide an intuitive and efficient user experience. The main
page features a clear layout of four core functional module buttons to accommodate diverse user nee

ds.

First, the "Photo Scan Detection" button serves as the program's core functionality, enabling users to
perform real-time wound detection through live camera scanning.

Second, the "Self-Detection" button innovatively employs a questionnaire format combined with gene
rative artificial intelligence technology to guide users through preliminary wound condition self-assess

ment.

Finally, the "Upload Photo Detection" button facilitates convenient upload of existing wound photogra
phs for analysis.

The overall program interface design maintains consistency with the iOS version, emphasizing usabilit
y, user-friendliness, and rapid response capabilities, ensuring users can conveniently and efficiently o

perate all detection functions.

V1. Project Testing Results

Wound Classification Accuracy: Ensuring that the YOLO11 model achieves an average
accuracy rate of 80% or higher for wound type identification (including laceration

s, incisions, abrasions, hematomas, etc.) on independent test datasets

Area Measurement Precision: Validating that wound area measurement error rates re

main below 5% on i0S devices equipped with LiDAR sensors.

Application Response Speed: Confirming that wound identification and treatment re
commendation output times do not exceed 2 seconds on both i0S and Android platform

S.

User Experience: Evaluating application stability in offline mode, as well as the

practical ity of the DeepSeek—integrated wound assessment and chatroom functionalit

y.

VIl. Conclusion and Future Prospects

With the rapid advancement of technology, particularly in artificial intelligence,

we aspire to integrate technology with healthcare through this emergency medical a

ssistance device. Our goal is to efficiently and accurately address injuries that
occur in people's daily lives by providing real-time medical aid, thereby minimizi
ng wound deterioration and the probability of secondary injuries to the greatest e
xtent possible. We aim to create a safe environment that safeguards everyone's saf

ety and health, with broader applications anticipated in the future.

We look forward to further enhancing the system's accuracy and practicality to bet
ter serve the public and reduce health risks resulting from improper wound managem
ent. This project not only demonstrates the potential of artificial intelligence i
n the medical field but also emphasizes the critical importance of combining techn
ology with healthcare. Our ultimate objective is to create a safer and healthier |

iving environment for everyone.

The integration of advanced Al algorithms with accessible mobile technology repres
ents a significant step toward democratizing healthcare access, particularly in un
derserved areas where immediate professional medical attention may not be readily
available. As we continue to refine and expand this technology, we envision a futu
re where intelligent wound assessment becomes a standard component of first aid ca
re, ultimately contributing to improved health outcomes and reduced healthcare dis

parities globally.

|X. Appendix

(a) Keywords

Core Project Attributes:
e Fast/Rapid
e Convenient
e FEasy—to-use
e Accurate
e Safe/Safety
Technology and Al Components:
e Artificial Intelligence (Al)
e Image Recognition
e Wound Recognition/ldentification
e Wound Treatment/Management
e High-efficiency/Efficient
Application Domains:
e Health/Healthcare

e Technology
e Medical
e Safety

(b) References

[1] BABKEIE KNGS R NAFER
https://www.airitilibrary.com/Article/Detail/P20210804002-N202311070009-00007

[2] EEEEHNARHME O RE 2 KR
https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login 7o=dncledr&s=1d%3D"099CTC05743052" . &searc hmo
de=basic

[B] EOFEEHE
http://tnha.com.tw/web/images/ckfinder/files/20171010104559.pdf

[4] BB O 2 BRI R A
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=0047262x-200704-54-2-62-67-a

[6] ALEeedn OG5 ER EREL R
https://patents.coogle.com/patent/CN111523508A/zh

6] EMEOEERE
https://www.moea.gov.tw/Mns/doit/videos/Videos.aspx ’menu_1d=13596&video 1d=174

(7= —/N\FIFREBEHRIATAETREE hitps://www.chp.oov.hk/files/pdf/report of unintentional injury
survey 2018 tc.pdf

[8]TWII-Consensus-2016_Chinese https://woundinfection-institute.com/wp-content/uploads/2021/06/IWII-Conse
nsus-2016_Chinese.pdf

(9] FEEAE IS ME O 2 B 7 RN REBR

https://www.mdpi.com/2076-3417/10/21/7613

[10] ALEsESNHFLRGFEE P ERASH R hitps:/d.wanfangdata.com.cn/periodical/Ch9QZXIp
b2RpY2FsQOh TmV3UzIwMjQOxMTA IMTcxMzAOEhJsY W56eXh5e GIyMDIOMDMwMTMaCGZ5amhjZndi

https://www.airitilibrary.com/Article/Detail/P20210804002-N202311070009-00007
http://tnha.com.tw/web/images/ckfinder/files/20171010104559.pdf
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=0047262x-200704-54-2-62-67-a
https://patents.google.com/patent/CN111523508A/zh
https://www.moea.gov.tw/Mns/doit/videos/Videos.aspx?menu_id=13596&video_id=174
https://www.chp.gov.hk/files/pdf/report_of_unintentional_injury_survey_2018_tc.pdf
https://www.chp.gov.hk/files/pdf/report_of_unintentional_injury_survey_2018_tc.pdf
https://woundinfection-institute.com/wp-content/uploads/2021/06/IWII-Consensus-2016_Chinese.pdf
https://woundinfection-institute.com/wp-content/uploads/2021/06/IWII-Consensus-2016_Chinese.pdf
https://www.mdpi.com/2076-3417/10/21/7613
https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0EhJsYW56eXh5eGIyMDI0MDMwMTMaCGZ5amhjZndi
https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0EhJsYW56eXh5eGIyMDI0MDMwMTMaCGZ5amhjZndi

(1] —BETFATERENMERYOBEARER B R hitps:/d.wanfanedata.com.cn/patent/ChhQY XRIbnR
OZXdTVHAYNDExMIxNJU4AMIISEENOMJAyNDEXMDAwOTEyL kaCHN1ZG10amMz

(12] " BETREZ2ZFEMNEOZREEBENERKK I E hitps://d.wanfangdata.com.cn/patent/Chh
QYXRIbnROZXdTMJAyNDExMIIxNjU4MISEENOMAyMEwNTI2MzASL kaCHN1ZG10amMz

[13]YOLO11 EYOLOVS : #FH LR
https://docs.ultralytics.com/zh/compare/yolol 1-vs-yolov&/

https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyNDExMDAwOTEyLjkaCHN1ZG10amMz
https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyNDExMDAwOTEyLjkaCHN1ZG10amMz
https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyMjEwNTI2MzA5LjkaCHN1ZG10amMz
https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyMjEwNTI2MzA5LjkaCHN1ZG10amMz
https://docs.ultralytics.com/zh/compare/yolo11-vs-yolov8/

