

WoundCare : Personalized wo

und treatment consultant dr

iven by YOLO11l AI image re

cognition and Deepseek R1
G

Group Members: FONG KUN FAI, ZENG QIAO HUI

Advising Teacher: Mr. HO IO FAI

School: Fong Chong School of Taipa, Macao SAR CHINA

Email Address: roy24245@icloud.com

mailto:roy24245@icloud.com

Table of Contents
I. SCENE ANALYSIS 3

(A) INVESTIGATION AND ANALYSIS PROCESS 3

(B) LITERATURE REVIEW OF SURVEY RESEARCH 3

II. PROJECT PROPOSAL 5

(A) KEY INNOVATION 5

(B) DESIGN CONCEPT AND IMPLEMENTATION PLAN 5

(C) AI MODEL TRAINING 6

(1) Training Data Collection and Compilation 6

(2) Model Training 7

(D) APPLICATION PROGRAM 9

(E) PRODUCT ADVANTAGES 10

III. INNOVATIVE FEATURES 11

(a) Key Innovation Points 11
(b) Process and Program code 11

IV. PROJECT IMPLEMENTATION PROCESS 33

(A) DATASET 33
(B) MODEL TRAINING 34

(C) APPLICATION DEPLOYMENT 35

V. PROJECT OUTCOMES 35

(A) MODEL PERFORMANCE 35

(B) APPLICATION PROGRAM 38

VI. PROJECT TESTING RESULTS 39

VII. CONCLUSION AND FUTURE PROSPECTS 39

IX. APPENDIX 40

(A) KEYWORDS 40

(B) REFERENCES 41

I. Scene Analysis

(a) Investigation and Analysis Process

According to survey data from the Hong Kong Department of Health, injuries in dail

y life are highly prevalent. Incidents of injury frequently occur in a variety of

settings, including homes, streets, commercial establishments, and sports venues.

In situations where there are no medical professionals or individuals with adequat

e medical knowledge present, there is a significant risk of improper wound managem

ent. Failure to treat wounds correctly and promptly can lead to serious health con

sequences, such as sepsis or tetanus. This issue is particularly acute in regions

with limited access to medical resources, where the probability of improper wound

care is even higher. Therefore, the presence of a wound care assistant is especial

ly crucial in such circumstances.

(b) Literature Review of Survey Research

In recent years, traumatic injuries have become a significant issue in the field o

f global public health. Among these, falls (39.4%), sprains (26.2%), and contusion

s (13.3%) constitute the primary causes of injury . Notably, 27.4% of injuries occ

ur in the home environment, and the uneven distribution of medical resources expos

es economically disadvantaged regions to a higher risk of wound-related complicati

ons, including infection, delayed healing, and even systemic threats such as sepsi

s . Against this backdrop, the development of intelligent wound assessment technol

ogies is crucial for enhancing diagnostic efficiency and reducing the burden on he

althcare systems.

Traditional clinical assessment relies on visual inspection combined with standard

ized scales, supplemented by digital planar measurements, alginate casting, and bi

ochemical testing . However, these methods exhibit significant limitations: first,

contact-based measurements may disrupt the wound microenvironment and increase the

risk of cross-infection; second, manual interpretation is susceptible to subjectiv

e bias, especially when quantifying parameters such as exudate volume, necrotic ti

ssue proportion, and granulation maturity in complex wounds. Studies have shown th

at wound area measurements based solely on visual assessment can have error rates

of 15%–20%, and are insufficiently sensitive to deep tissue injuries .

Image analysis systems based on convolutional neural networks (CNNs) have enabled

the automated extraction and classification of wound characteristics. For example,

a multimodal imaging integration system released in 2024 combines color imaging, t

hermal imaging, and 3D depth sensing data. Utilizing a residual network (ResNet) a

rchitecture, it extracts 136 characteristic parameters, including wound edges, exu

date distribution, and peripheral skin temperature gradients . In clinical trials,

this system demonstrated a wound staging accuracy rate of 92.3%, representing a 37

percentage point improvement over traditional methods .

In the domain of area measurement, a laser-assisted deep learning model developed

in 2022 innovatively integrated prior two-dimensional graphic calibration techniqu

es. By establishing a nonlinear regression model between pixel density and shootin

g height, the system achieved wound area measurement errors of less than 2.5% with

out the need for reference objects, and was able to transmit data in real time to

electronic medical record systems . Notably, this technology successfully overcome

s measurement deviations caused by perspective distortion in curved wounds, which

is particularly important for the accurate assessment of wounds on limbs .

Prospective studies on postoperative incision healing monitoring have shown that A

I systems can identify 87.6% of potential infection cases 3–5 days in advance. Th

is is achieved by analyzing changes in microvascular density around the incision

(ΔMVD 15%) and abnormalities in epidermal growth factor concentration gradients

(p<0.01), enabling early warning . In resource-limited settings, mobile terminals

equipped with this technology have increased the correct wound management rate amo

ng primary healthcare workers from 58.2% to 89.7%, while reducing the average asse

ssment time from 23 minutes to 4.5 minutes .

Current technological bottlenecks focus on optimizing multimodal data fusion algor

ithms, particularly in effectively integrating near-infrared spectral tissue oxyge

nation data with visible light image features . The latest research in 2025 has at

tempted to introduce graph neural networks (GNNs) to establish dynamic models of t

he wound microenvironment, enabling prediction of healing trends within 72 hours

(R² = 0.89). Furthermore, the development of embedded medical devices compliant wi
th ISO-13485 standards, the establishment of cross-institutional wound image datab

ases, and the refinement of FDA/CE certification processes will be key breakthroug

hs for the commercialization of these technologies .

LIDAR sensors, by emitting near-infrared laser pulses and receiving their reflecte

d signals, can accurately measure the three-dimensional spatial distance of target

objects, generating high-density point cloud data. Compared to traditional 2D imag

e measurement, LIDAR technology overcomes the limitations of planar imaging, enabl

ing precise capture of wound depth information and three-dimensional contours. Thi

s is especially suitable for measuring irregular and curved surface wounds.

II. Project Proposal

(a) Key Innovation

The project is divided into a mobile application and a physical device, both offer

ing similar functionalities. First, the camera is used to capture images of the wo

und. The wound model, trained with YOLO v11, identifies the wound and provides app

ropriate treatment recommendations in either voice or text format based on the wou

nd type. The application is deeply integrated with DeepSeek, allowing users to int

eract with the "e-Heal" chatbot while connected to the internet. Users can inquire

about wound types, wound care methods, or other related questions. Based on the us

er’s specific situation, the system conducts wound assessments and offers more de

tailed diagnostic and treatment suggestions.

(b) Design Concept and Implementation Plan

The project is an AI image recognition-driven personalized wound management consul

tant. The entire solution consists of mobile application. The mobile version is an

application that delivers results in text format.

(c) AI Model Training

The development process begins with the selection of an appropriate pre-trained model and preparation of a

clearly annotated wound image dataset. Data augmentation techniques are employed to enhance the model's

generalization capabilities. Subsequently, the final classification layer is removed and new layers are added

to adapt the model specifically for wound classification tasks, while certain layers are frozen to preserve the

pre-trained weights. Following model training, performance is evaluated on a validation dataset to ensure ac

curate identification of various wound types. Finally, the model is deployed to the application, enabling real

-time classification functionality

(1) Training Data Collection and Compilation

Due to the challenges in acquiring wound-related data in real-world environments, our projec

t employs a diversified data collection strategy. Initially, we gathered relevant wound imagery

through public internet channels, including existing public datasets and search engine querie

s, to conduct supplementary data collection. Concurrently, this research collaborated with ou

r school's medical staff to collect wound photographs from students and faculty members wh

o sustained injuries, with appropriate consent, thereby establishing a proprietary wound imag

e dataset specific to this project.

Currently, we have assembled 7,668 original wound images, categorized according to six wo

und types plus normal skin classification. Considering the optimal input dimensions of 640×6

40 pixels for the YOLO11 model, all data has been standardized to these dimensions to enh

ance training efficiency and effectiveness.

To further improve the model's accuracy and generalization capabilities, we implemented var

ious data augmentation techniques, including:

• Angle adjustments (range: -15° to +15°)

• Horizontal and vertical flips

• Brightness adjustments (amplitude: ±15%)

• Addition of Gaussian noise (standard deviation 0.1 pixel)

Following these data augmentation procedures, the dataset expanded from the original 7,66

8 images to 45,271 images, significantly enhancing the model's ability to capture sample feat

ures and overall performance during the training process.

(2) Model Training

Given our project's high requirements for both accuracy and speed in wound recognition and

detection, we selected YOLO11 as the core model. YOLO11 offers excellent object detection

precision and efficient inference speed, effectively meeting the dual requirements of real-tim

e performance and accuracy necessary for clinical wound image analysis.

YOLO11 surpasses previous generations of YOLO series models in architectural innovation,

performance enhancement, and application flexibility. Its efficient feature extraction, optimize

d inference speed, and multi-task support capabilities make it one of the preferred models in

the current field of image recognition.

YOLO11 incorporates multiple optimizations in its network architecture. Both the Backbone a

nd Neck networks have been redesigned, significantly enhancing feature extraction capabiliti

es. Specifically, YOLO11 replaces the C2f structure from previous generations with C3K2 m

odules, strengthening the ability to capture image details. Additionally, the model introduces

a C2PSA attention mechanism after the SPPF (Spatial Pyramid Pooling-Fast) module, furthe

r improving perception and selectivity of key visual information. The detection head section o

ptimizes the convolutional structure, enhancing inference efficiency. These structural innovat

ions make YOLO11's detection performance more robust in multi-object, occlusion, and com

plex scene scenarios.

YOLO11 has achieved significant improvements in model efficiency and inference speed. Ac

cording to official experimental results, YOLO11 maintains or even improves accuracy while

significantly reducing parameter count and computational requirements. For example, the Y

OLO11m model achieves higher mean Average Precision (mAP) on the COCO dataset com

pared to YOLOv8m, with approximately 22% fewer parameters. Furthermore, YOLO11's infe

rence speed is approximately 2% faster than YOLOv10, with particularly notable performanc

e on CPU platforms, demonstrating its potential for application on resource-constrained devi

ces. This high-efficiency, low-latency characteristic is particularly crucial for real-time image

processing and edge computing scenarios.

YOLO11 extends support for various visual tasks, including object detection, instance segme

ntation, keypoint pose estimation, oriented object detection, classification, and object trackin

g. This unified multi-task framework simplifies application development processes and enhan

ces the model's versatility and scalability. YOLO11 also offers multiple model scales (such a

s nano, small, medium, large, xlarge), allowing users to select appropriate model weights ac

cording to actual requirements, enabling flexible trade-offs between speed and precision.

Model Input Siz

e

mAP val 50-

95

CPU Inference L

atency (ms)

GPU Inference L

atency (ms, T4)

Parameters

(M)

FLOPs(B)

YOLO11n 640 39.5 56.1 1.5 2.6 6.5

YOLO11s 640 47.0 90.0 2.5 9.4 21.5

YOLO11m 640 51.5 183.2 4.7 20.1 68.0

YOLO11l 640 53.4 238.6 6.2 25.3 86.9

YOLO11x 640 54.7 462.8 11.3 56.9 194.9

Based on the comprehensive performance evaluation of the YOLO11 series models (as illust

rated in the above graphs), this research conducted model selection tailored to the specific r

equirements of wound detection tasks. After weighing key indicators of computational efficie

ncy against detection accuracy, the YOLO11l model was ultimately selected as the core arch

itecture.

(d) Application Program

Operational Flow:
Upon first launching the application, the system requests camera, notification, an

d file access permissions. Once in the mobile application, users select their pref

erred language and position the smartphone camera toward the wound. By pressing th

e "Capture Scan" button or uploading an existing photo, users receive a textual id

entification of the wound type along with appropriate treatment methods within app

roximately 1.5 seconds.

Compatibility:
The application is compatible with both iOS and Android operating systems.

Model Loading Architecture:
• iOS application: The model loads when the user opens the application

• Android application: The model loads after the user captures a photograph

Development Languages:
• iOS version is compiled using Swift

• Android version is compiled using Kotlin

Advanced Integration:
The mobile version features deep integration with DeepSeek technology:

• In connected status, users can access the "e-Heal" chatroom via button pres

s to inquire about wound types, treatment methods, or other relevant questi

ons, providing services more tailored to user needs

• While online, users can enter the wound assessment section and select optio

ns that match their condition to receive more detailed wound diagnosis and

treatment recommendations

•

Severity Measurement Capability:
On iOS devices equipped with LiDAR sensors, the application leverages distance det

ection data provided through ARKit to calculate wound surface area. This measureme

nt helps determine wound severity based on size parameters.

(e) Product Advantages

• User-Friendly Interface (single-click operation)

• Rapid Processing (approximately 1.5 seconds loading time after image capt

ure)

• High Accuracy (wound detection average accuracy rate of [value])

• Offline Functionality (both the application and physical device can opera

te without internet connectivity, allowing for use in various environments)

• Enhanced Online Capabilities (when connected to the internet, the iOS ver

sion integrates with DeepSeek to provide comprehensive wound assessment and

AI chatroom functionality, delivering more detailed wound diagnosis and tre

atment recommendations)

III. Innovative Features

(a) Key Innovation Points

● AI-Powered Recognition Technology for efficient identification of wound typ

es

● Pre-trained wound recognition model using the advanced YOLO11 architecture

● Intelligent medical device for wound detection and analysis

● Solution for underserved communities with limited access to medical resourc

es

● Deep integration with DeepSeek as a virtual physician, enhancing user asses

sment of wound conditions

● LiDAR sensor technology for precise wound area calculation through distance

measurement

(b) Process and Program code

(1) Process Overview

I. User Operation (ContentView.swift):
i. User taps the "Photo Scan" button.

ii. ContentView internally calls the captureImage() method.

II. Image Capture (CameraManager.swift):

i. ContentView.captureImage() calls cameraManager.capturePhoto { imag

e, error in ... }.

ii. CameraManager.capturePhoto(): Uses the capturePhoto(with:delegat

e:) method of an AVCapturePhotoOutput instance to take a photo.

iii. The captured UIImage (or error) is returned asynchronously via the photoOutput(_:d

idFinishProcessingPhoto:error:) delegate method of AVCapturePhotoCap

tureDelegate.

III. Image Classification (ContentView.swift -> WoundClassifier.swift):

i. ContentView receives the UIImage in the callback of cameraManager.capturePh

oto.

ii. Assigns the captured image to @State var capturedImage.

iii. Calls the classifier.classify(image) method, passing the image to WoundClas

sifier for analysis.

iv. WoundClassifier.classify(image: UIImage):

1. Internally, the image is first preprocessed: resized to the model's expected input size

(e.g., 640x640), letterboxed to maintain aspect ratio, and then converted to CVPixe

lBuffer.

2. Creates a VNCoreMLRequest using a preloaded Core ML model (YOLOv8).

3. Creates a VNImageRequestHandler and performs model inference using handl

er.perform([request]).

v. WoundClassifier.processYOLOResults(request:error:) (as a callback for

VNCoreMLRequest):

1. Parses the raw output of the model (usually a multi-dimensional array).

2. Iterates through the predictions, extracting the bounding box (box), confidence, and

class index for each detected object.

3. Converts class indices to human-readable class names (e.g., "Abrasion", "Hematoma

").

4. Selects the detection with the highest confidence from all detections above the confi

dence threshold as bestDetection.

5. Updates @Published properties such as self.classification, self.conf

idence, and self.bestDetection.

6. Finally, calls the self.onClassificationComplete?(self.classificat

ion, self.confidence) closure to notify observers (usually ContentView) t

hat classification is complete.

IV. Result Display and History (ContentView.swift):

i. In ContentView, the classifier.onClassificationComplete callback is trigg

ered (set up within the captureImage method).

ii. In this callback, historyManager.saveStandardScan(image:capturedImag

e, classification: ..., confidence: ...) is called to save the result to hist

ory.

iii. Simultaneously, a local notification sendNotification(...) is sent to inform the us

er of the identification result.

iv. Sets @State var showingResult = true, which triggers the display of the Resul

tView card.

V. Result View (ResultView.swift):

i. ResultView is presented, receiving data such as capturedImage and classifier

(as an @ObservedObject).

ii. In its .onAppear or after listening for the ClassificationComplete notification vi

a NotificationCenter, it calls the internal getWoundTreatmentAdvice(wound

Type: classifier.classification) method.

iii. ResultView.getWoundTreatmentAdvice() calls deepseekService.getWoun

dTreatmentAdvice(woundType: ..., language: languageManager.curr

entLanguage, ...) to asynchronously fetch AI-powered smart suggestions.

iv. ResultView internally uses classifier.drawAnnotations(on: image) to dra

w the bounding box and label of bestDetection on the passed image, and then display

s this annotated image.

v. It also displays the wound type and local treatment suggestions obtained from classifi

er, as well as AI suggestions from deepseekService.

(2) Key Code

The following Swift code provides a more detailed look at the `WoundClassifier`, specifically expanding th

e `processYOLOResults` method to illustrate how raw model output from a YOLOv8 model might be parse

d. It includes placeholder logic for parsing the tensor and mapping class indices to labels.


```swift 

// WoundClassifier.swift 

class WoundClassifier: ObservableObject { 

    @Published var classification: String = "N/A" 

    @Published var confidence: Float = 0.0 

    @Published var bestDetection: WoundDetection? = nil // Updated type 

 

    var onClassificationComplete: ((_ classification: String, _ confidence: Float) -> Void)? 

    private var yoloRequest: VNCoreMLRequest? 

 

    // Existing init() or a new one to setup the model request 

    init() { 

        // Load your Core ML model and create the VNCoreMLRequest 

        // For example: 

        // guard let modelURL = Bundle.main.url(forResource: "YOLOv8WoundModel", withExtension: "mlmodelc") else { 

        //     fatalError("Failed to load Core ML model.") 

        // } 

        // do { 

        //     let visionModel = try VNCoreMLModel(for: MLModel(contentsOf: modelURL)) 

        //     self.yoloRequest = VNCoreMLRequest(model: visionModel, completionHandler: processYOLOResults) 

        //     // Set any specific request properties if needed 

        //     // self.yoloRequest?.imageCropAndScaleOption = .scaleFill  

        // } catch { 

        //     fatalError("Failed to create VNCoreMLModel: \(error)") 

        // } 

    } 

 

    func classify(_ image: UIImage) { 

        guard let yoloRequest = self.yoloRequest else { 

            print("YOLO request not initialized.") 

            return 

        } 

        guard let pixelBuffer = image.toCVPixelBuffer(width: 640, height: 640) else { // Ensure correct dimensions for your model 

            print("Failed to convert UIImage to CVPixelBuffer.") 

            DispatchQueue.main.async { 

                self.classification = "Preprocessing Failed" 

                self.confidence = 0.0 

                self.bestDetection = nil 

                self.onClassificationComplete?("Preprocessing Failed", 0.0) 

            } 

            return 

        } 

        let handler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, orientation: .up) // Assuming image is upright 

        do { 

            try handler.perform([yoloRequest]) // Calls VNCoreMLRequest completion (processYOLOResults) 



        } catch { 

            print("Failed to perform Vision request: \(error.localizedDescription)") 

            DispatchQueue.main.async { 

                self.classification = "Inference Error" 

                self.confidence = 0.0 

                self.bestDetection = nil 

                self.onClassificationComplete?("Inference Error", 0.0) 

            } 

        } 

    } 

 

    private func processYOLOResults(_ request: VNRequest, error: Error?) { 

        guard error == nil else { 

            print("Vision request failed with error: \(error!.localizedDescription)") 

            DispatchQueue.main.async { 

                self.classification = "Error" 

                self.confidence = 0.0 

                self.bestDetection = nil 

                self.onClassificationComplete?("Error", 0.0) 

            } 

            return 

        } 

 

        // This part is highly dependent on the specific YOLOv8 model's output format. 

        // Some models output VNRecognizedObjectObservation directly. 

        // Others output raw feature values (MLMultiArray) that need manual parsing. 

         

        // Option 1: If your model is post-processed to output VNRecognizedObjectObservation 

        if let results = request.results as? [VNRecognizedObjectObservation] { 

            var highestConfidenceObservation: VNRecognizedObjectObservation? = nil 

            var maxConfidence: Float = 0.0 

 

            for observation in results { 

                // Assuming the first label is the most relevant one. 

                if let firstLabel = observation.labels.first, firstLabel.confidence > maxConfidence { 

                    maxConfidence = firstLabel.confidence 

                    highestConfidenceObservation = observation 

                } 

            } 

 

            DispatchQueue.main.async { 

                if let bestObs = highestConfidenceObservation, let label = bestObs.labels.first { 

                    self.classification = label.identifier 

                    self.confidence = label.confidence 

                    self.bestDetection = WoundDetection( 

                        boundingBox: bestObs.boundingBox, // This is normalized (0-1) 

                        confidence: label.confidence, 

                        label: label.identifier, 

                        classIndex: 0 // Or map identifier to index if needed 

                    ) 

                } else { 



                    self.classification = "No Wound Detected" 

                    self.confidence = 0.0 

                    self.bestDetection = nil 

                } 

                self.onClassificationComplete?(self.classification, self.confidence) 

            } 

        } 

        // Option 2: If your model outputs raw MLMultiArray (more common for unmodified YOLO) 

        else if let results = request.results as? [VNCoreMLFeatureValueObservation], 

                let outputTensor = results.first?.featureValue.multiArrayValue { 

             

            let detections = parseYOLOv8Output(tensor: outputTensor) 

 

            var highestConfidence: Float = 0.0 

            var bestOverallDetection: WoundDetection? = nil 

 

            for detection in detections { 

                if detection.confidence > highestConfidence && detection.confidence > 0.5 { // Example threshold 

                    highestConfidence = detection.confidence 

                    bestOverallDetection = detection 

                } 

            } 

 

            DispatchQueue.main.async { 

                if let best = bestOverallDetection { 

                    self.classification = best.label 

                    self.confidence = best.confidence 

                    self.bestDetection = best 

                } else { 

                    self.classification = "No Wound Detected" 

                    self.confidence = 0.0 

                    self.bestDetection = nil 

                } 

                self.onClassificationComplete?(self.classification, self.confidence) 

            } 

        } else { 

            print("Failed to interpret Vision request results. Neither VNRecognizedObjectObservation nor VNCoreMLFeatureValueOb

servation found or parsable.") 

            DispatchQueue.main.async { 

                self.classification = "Processing Failed" 

                self.confidence = 0.0 

                self.bestDetection = nil 

                self.onClassificationComplete?("Processing Failed", 0.0) 

            } 

        } 

    } 

 

    // Dummy parseYOLOv8Output function and WoundDetection struct for illustration 

    // Replace with your actual parsing logic and data structures. 

    private func parseYOLOv8Output(tensor: MLMultiArray) -> [WoundDetection] { 

        // This is highly dependent on your YOLOv8 model's exact output format. 



        // It might involve reshaping the tensor, iterating through detections, 

        // applying non-maximum suppression, and converting coordinates. 

        // Example: tensor shape could be (1, num_attributes, num_detections) or (1, num_detections, num_attributes) 

        // num_attributes typically includes (x_center, y_center, width, height, object_confidence, class_probs...) 

         

        var detectedObjects: [WoundDetection] = [] 

        // The following is a generic placeholder and needs to be adapted. 

        // Let's assume output is (1, 8400, 5 + num_classes) for an example YOLO model 

        // where 8400 is number of proposals, 5 is (cx, cy, w, h, obj_conf) 

        let numProposals = tensor.shape[1].intValue  

        let numAttributesPerProposal = tensor.shape[2].intValue 

        let numClasses = numAttributesPerProposal - 5 // Assuming 5 for box + obj_conf 

 

        for i in 0..<numProposals { 

            let basePointer = UnsafeMutableBufferPointer<Float32>(striding: tensor.strides[1].intValue, count: numAttributesPerPropo

sal, UnsafeMutableRawPointer(tensor.dataPointer).advanced(by: i * tensor.strides[1].intValue * MemoryLayout<Float32>.stride)) 

 

            let cx = basePointer[0] 

            let cy = basePointer[1] 

            let w = basePointer[2] 

            let h = basePointer[3] 

            let objConfidence = basePointer[4] 

 

            if objConfidence < 0.5 { continue } // Object confidence threshold 

 

            var maxClassProb: Float = 0.0 

            var classIndex: Int = -1 

 

            for j in 0..<numClasses { 

                let classProb = basePointer[5+j] 

                if classProb > maxClassProb { 

                    maxClassProb = classProb 

                    classIndex = j 

                } 

            } 

             

            let finalConfidence = objConfidence * maxClassProb 

            if finalConfidence > 0.5 { // Final confidence threshold 

                // Convert YOLO center_x, center_y, width, height to top-left x,y, width, height 

                // These coordinates are usually normalized to the input image size (e.g., 640x640) 

                let x = CGFloat(cx - w/2) 

                let y = CGFloat(cy - h/2) 

                let boundingBox = CGRect(x: x, y: y, width: CGFloat(w), height: CGFloat(h))  

                 

                let label = mapClassIndexToLabel(classIndex) 

                 

                detectedObjects.append(WoundDetection(boundingBox: boundingBox, confidence: finalConfidence, label: label, classIn

dex: classIndex)) 

            } 

        } 

        // Non-Maximum Suppression (NMS) should ideally be applied here to filter overlapping boxes. 



        // This is often a separate step or can be part of the model's custom layers if exported that way. 

        return nms(detections: detectedObjects) // Placeholder for NMS 

    } 

     

    // Placeholder NMS function 

    private func nms(detections: [WoundDetection], iouThreshold: Float = 0.45) -> [WoundDetection] { 

        // Implement Non-Maximum Suppression logic here 

        // 1. Sort detections by confidence (descending). 

        // 2. Iterate through sorted detections: 

        //    - Take the current highest confidence detection. 

        //    - Remove all other detections that have an IoU (Intersection over Union) with it above the threshold. 

        return detections // Return filtered detections 

    } 

 

    private func mapClassIndexToLabel(_ index: Int) -> String { 

        let labels = ["Abrasion", "Hematoma", "Laceration", "Puncture", "Burn"] // Example labels 

        if index >= 0 && index < labels.count { 

            return labels[index] 

        } 

        return "Unknown" 

    } 

     

    // Helper to convert UIImage to CVPixelBuffer (from Apple's sample code or similar) 

    // You might have this in an extension or utility class 

    func imageToCVPixelBuffer(image: UIImage, width: Int, height: Int) -> CVPixelBuffer? { 

        // ... implementation for converting UIImage to CVPixelBuffer of specific size ... 

        // This involves creating a CVPixelBuffer, drawing the image into it (potentially resizing/letterboxing) 

        return image.toCVPixelBuffer(width: width, height: height) // Assuming an extension like below 

    } 

 

    func drawAnnotations(on image: UIImage, detection: WoundDetection?) -> UIImage { 

        let imageSize = image.size 

        UIGraphicsBeginImageContextWithOptions(imageSize, false, image.scale) 

        image.draw(at: .zero) 

        guard let context = UIGraphicsGetCurrentContext(), let detection = detection else { 

            UIGraphicsEndImageContext() 

            return image 

        } 

 

        // Convert normalized bounding box to image coordinates 

        let boundingBox = detection.boundingBox // This should be normalized (0-1) 

        let rect = CGRect( 

            x: boundingBox.origin.x * imageSize.width, 

            y: boundingBox.origin.y * imageSize.height, 

            width: boundingBox.width * imageSize.width, 

            height: boundingBox.height * imageSize.height 

        ) 

 

        context.setStrokeColor(UIColor.red.cgColor) 

        context.setLineWidth(max(imageSize.width / 200, 2.0)) // Dynamic line width 



        context.stroke(rect) 

 

        // Draw label and confidence 

        let text = String(format: "%@: %.2f", detection.label, detection.confidence) 

        let attributes: [NSAttributedString.Key: Any] = [ 

            .font: UIFont.systemFont(ofSize: max(imageSize.width / 40, 12.0)), // Dynamic font size 

            .foregroundColor: UIColor.white, 

            .backgroundColor: UIColor.red.withAlphaComponent(0.7) 

        ] 

        let textSize = text.size(withAttributes: attributes) 

        let textRect = CGRect(x: rect.origin.x, y: rect.origin.y - textSize.height - 2, width: textSize.width, height: textSize.height) 

        text.draw(in: textRect, withAttributes: attributes) 

         

        let annotatedImage = UIGraphicsGetImageFromCurrentImageContext() 

        UIGraphicsEndImageContext() 

        return annotatedImage ?? image 

    } 

} 

 

// UIImage extension for CVPixelBuffer conversion (example) 

extension UIImage { 

    func toCVPixelBuffer(width: Int, height: Int) -> CVPixelBuffer? { 

        let attrs = [ 

            kCVPixelBufferCGImageCompatibilityKey: kCFBooleanTrue, 

            kCVPixelBufferCGBitmapContextCompatibilityKey: kCFBooleanTrue 

        ] as CFDictionary 

        var pixelBuffer: CVPixelBuffer? 

        let status = CVPixelBufferCreate(kCFAllocatorDefault, width, height, kCVPixelFormatType_32ARGB, attrs, &pixelBuffer) 

        guard status == kCVReturnSuccess, let buffer = pixelBuffer else { 

            return nil 

        } 

 

        CVPixelBufferLockBaseAddress(buffer, CVPixelBufferLockFlags(rawValue: 0)) 

        let pixelData = CVPixelBufferGetBaseAddress(buffer) 

 

        let rgbColorSpace = CGColorSpaceCreateDeviceRGB() 

        guard let context = CGContext( 

            data: pixelData, 

            width: width, 

            height: height, 

            bitsPerComponent: 8, 

            bytesPerRow: CVPixelBufferGetBytesPerRow(buffer), 

            space: rgbColorSpace, 

            bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue 

        ) else { 

            CVPixelBufferUnlockBaseAddress(buffer, CVPixelBufferLockFlags(rawValue: 0)) 

            return nil 

        } 

 

        // Scale and draw the image to fit the pixel buffer (letterboxing/aspect fill as needed) 

        // This example scales to fill, potentially distorting aspect ratio. 



        // For production, use a more sophisticated scaling (e.g., Vision's VNImageCropAndScaleOption) 

        // or implement letterboxing manually. 

        context.translateBy(x: 0, y: CGFloat(height)) 

        context.scaleBy(x: 1.0, y: -1.0) 

        UIGraphicsPushContext(context) 

        self.draw(in: CGRect(x: 0, y: 0, width: width, height: height)) 

        UIGraphicsPopContext() 

 

        CVPixelBufferUnlockBaseAddress(buffer, CVPixelBufferLockFlags(rawValue: 0)) 

        return buffer 

    } 

} 

 

// It's recommended to define shared data structures like WoundDetection globally or in a shared file. 

// For illustrative purposes, its structure might be: 

// struct WoundDetection: Identifiable { // Conforming to Identifiable if used in ForEach 

//    let id = UUID() // Useful for SwiftUI lists 

//    let boundingBox: CGRect // Normalized coordinates (0.0 to 1.0) relative to the input image size. 

//    let confidence: Float 

//    let label: String 

//    let classIndex: Int     // Original index from the model's classes 

// } 

// Ensure @Published bestDetection in WoundClassifier is updated to type WoundDetection? 

// Example: @Published var bestDetection: WoundDetection? = nil 

``` 


X.2 LiDAR Enhanced Scan

This function utilizes the LiDAR sensor to measure distance and combines it with image analysis to calculate wound area and asses

s severity.

Process Overview:

1. **User Operation (`ContentView`)**:

 * User taps the "Enhanced Scan" button (only displayed if LiDAR is available).

 * Calls `startEnhancedScan()`.

2. **Initiate Scan (`ContentView` -> `EnhancedScanManager`)**:

 * `ContentView.startEnhancedScan()`:

 * Sets `showingScanProgress = true` to display the progress UI.

 * Calls `enhancedScanManager.performScan()`.

 * `EnhancedScanManager.performScan()`:

 * Checks for LiDAR support.

 * Calls `setupARSession()` to start `ARSession` and request depth data.

 * Starts `startDepthStabilizationProcess()` to stabilize depth readings.

3. **Data Capture and Processing (`EnhancedScanManager`)**:

 * `startDepthStabilizationProcess()`: Stabilizes the acquisition of `ARFrame` and distance using a timer and `takeSingleFrameC

apture`.

 * After stabilization, calls `captureFrame()`, which in turn calls `processFrame(frame: ARFrame)`.

 * `processFrame()`:

 * Gets the image (`capturedImage`) and average distance (`distanceCopy`) from `ARFrame`.

 * Calls `updateCameraIntrinsics()` to update camera intrinsic parameters.

 * Instantiates `WoundClassifier` and calls `classifier.classify(image)`.

4. **Classification and Area Calculation (`EnhancedScanManager` + `WoundClassifier`)**:

 * `WoundClassifier.classify()` follows the same process as the standard scan to find `bestDetection`.

 * `EnhancedScanManager` in the `classifier.onClassificationComplete` callback:

 * If `bestDetection` exists:

 * Calls `classifier.drawAnnotations(on: image)` to generate an annotated image.

 * Calls `self.calculateArea(boundingBox: bestDetection.box, distance: distanceCopy, ...)` to calculate the area.

 * Calls `self.assessSeverity(area: areaResult)` to assess severity.

 * Prepares `EnhancedScanResult`.

 * If `bestDetection` does not exist, prepares an `EnhancedScanResult` indicating "not detected".

 * Calls `self.scanCompletion?(.success(finalResult))` or `.failure()`.

 * Calls `self.cleanup()` to stop `ARSession`.

5. **Result Display and History (`ContentView`)**:

 * The callback of `ContentView.startEnhancedScan()` is triggered.

 * Hides the progress view.

 * If successful, updates `enhancedScanResult` and sets `showingEnhancedScanResult = true` to display `EnhancedScanResultV

iew`.

 * Calls `historyManager.saveLiDARScan(...)` to save the record.

 * If failed, displays an error message.

6. **Result View (`EnhancedScanResultView`)**:

 * Receives `EnhancedScanResult`.

 * Displays the image (with annotations generated by `EnhancedScanManager` or drawn by the view itself based on `woundBou

ndingBox`).

 * Displays wound classification, distance, area, and severity.

 * Displays basic treatment advice, AI suggestions, "e-Consult" button, and "Seek Immediate Help" button.

Key Code Snippets (Detailed Illustration):

The `EnhancedScanManager.swift` snippet below is expanded to demonstrate a more complete, albeit still illustrative, implementati

on for LiDAR-enhanced scanning. It includes:

* Basic `ARSession` setup to access depth data and camera frames.

* Callbacks for `ARSessionDelegate` to receive frame updates and potentially camera intrinsics.

* A more detailed `processFrame` method to convert `ARFrame`'s `capturedImage` to `UIImage` and initiate classification using t

he `WoundClassifier`.

* An expanded `handleClassificationCompletion` callback (triggered by `WoundClassifier`) to integrate classification results with

depth information for placeholder area and severity calculations. This highlights where 3D geometry and depth map processing wou

ld occur.

* Placeholder functions for `getAverageDepthForBoundingBox`, `calculatePhysicalAreaFromDetection`, and `assessSeverity` to u

nderscore the complex calculations and logic required for accurate measurements.


```swift 

// EnhancedScanManager.swift 

import ARKit 

import RealityKit // Often used with ARKit, though not strictly necessary for session management 

import Combine   // For @Published properties and managing asynchronous operations 

import UIKit     // For UIImage 

 

class EnhancedScanManager: NSObject, ObservableObject, ARSessionDelegate { 

    @Published var scanProgress: Double = 0.0 // Example: 0.0 to 1.0 

    @Published var currentDepthString: String = "N/A" // For displaying live depth info 



    @Published var annotatedImage: UIImage? // The image with wound annotation and measurements 

    @Published var isScanning: Bool = false 

 

    private var arSession: ARSession? 

    private var imageClassifier: WoundClassifier? 

    private var cancellables = Set<AnyCancellable>() 

 

    // Store latest camera parameters and depth data for calculations 

    private var currentFrame: ARFrame? 

    private var cameraIntrinsics: simd_float3x3? 

    private var cameraResolution: CGSize? 

 

    // Completion handler for the scan result 

    var scanCompletion: ((Result<EnhancedScanResult, Error>) -> Void)? 

 

    override init() { 

        super.init() 

        self.imageClassifier = WoundClassifier() // Assuming WoundClassifier is defined as in X.1 

 

        // Subscribe to the classifier's completion 

        imageClassifier?.$bestDetection // Or use the onClassificationComplete closure 

            .receive(on: DispatchQueue.main) 

            .sink { [weak self] detection in 

                guard let self = self, self.isScanning, let detection = detection else { return } 

                // This is called when classification is done for a frame 

                self.handleClassificationCompletion(detection: detection) 

            } 

            .store(in: &cancellables) 

    } 

 

    func performScan(completion: @escaping (Result<EnhancedScanResult, Error>) -> Void) { 

        self.scanCompletion = completion 

        self.isScanning = true 

        self.annotatedImage = nil // Reset previous scan image 

         

        guard ARWorldTrackingConfiguration.isSupported else { 

            completeScan(.failure(ScanError.arNotSupported)) 

            return 

        } 

        // Check for LiDAR availability if strictly required (though sceneDepth can work on non-LiDAR with less accuracy) 

        // guard ARWorldTrackingConfiguration.supportsSceneReconstruction(.mesh) else { 

        //     completeScan(.failure(ScanError.lidarNotSupported)) 

        //     return 

        // } 

 

        arSession = ARSession() 

        arSession?.delegate = self 

         

        let configuration = ARWorldTrackingConfiguration() 

        if ARWorldTrackingConfiguration.supportsFrameSemantics(.sceneDepth) { 

            configuration.frameSemantics.insert(.sceneDepth) // Request scene depth data 



        } else { 

            completeScan(.failure(ScanError.sceneDepthNotSupported)) 

            return 

        } 

        // configuration.sceneReconstruction = .mesh // If you need to build a 3D mesh of the environment 

 

        arSession?.run(configuration) 

         

        // Simulate a scan duration or trigger frame capture based on stability/user action 

        // For this example, we'll rely on the ARSessionDelegate to provide frames. 

        // You might have a button "Capture" or a timer. 

        // Here, let's assume we want to process a frame after a short delay for stabilization. 

        DispatchQueue.main.asyncAfter(deadline: .now() + 1.5) { [weak self] in 

            self?.captureAndProcessCurrentFrame() 

        } 

    } 

 

    private func captureAndProcessCurrentFrame() { 

        guard self.isScanning, let frame = self.currentFrame ?? arSession?.currentFrame else { 

            // If no frame available yet, or scan was stopped 

            if self.isScanning { // if still scanning but no frame, might be an error 

                 completeScan(.failure(ScanError.noFrameAvailable)) 

            } 

            return 

        } 

        processFrameForWound(frame: frame) 

    } 

     

    // ARSessionDelegate method 

    func session(_ session: ARSession, didUpdate frame: ARFrame) { 

        self.currentFrame = frame // Store the latest frame 

        self.cameraIntrinsics = frame.camera.intrinsics 

        self.cameraResolution = frame.camera.imageResolution 

         

        // Optionally, update live depth string for UI, e.g., depth at screen center 

        if let sceneDepth = frame.sceneDepth { 

            let depthMap = sceneDepth.depthMap 

            // This requires converting screen point to depth map coordinates 

            // For simplicity, let's skip live display update here, focus on capture. 

        } 

    } 

     

    func session(_ session: ARSession, didFailWithError error: Error) { 

        print("ARSession failed with error: \(error.localizedDescription)") 

        completeScan(.failure(ScanError.arSessionFailed(error))) 

    } 

 

    private func processFrameForWound(frame: ARFrame) { 

        guard let pixelBuffer = frame.capturedImage else { 

            completeScan(.failure(ScanError.noImageInFrame)) 

            return 



        } 

         

        let ciImage = CIImage(cvPixelBuffer: pixelBuffer) 

        let context = CIContext(options: nil) 

        guard let cgImage = context.createCGImage(ciImage, from: ciImage.extent) else { 

            completeScan(.failure(ScanError.imageConversionFailed)) 

            return 

        } 

        let capturedUIImage = UIImage(cgImage: cgImage, scale: 1.0, orientation: .right) // ARKit frames are landscape right 

        self.annotatedImage = capturedUIImage // Store initial image 

 

        // Pass to classifier 

        imageClassifier?.classify(capturedUIImage) 

        // Result will be handled by the sink observing imageClassifier.$bestDetection 

    } 

 

    private func handleClassificationCompletion(detection: WoundDetection) { 

        guard self.isScanning, 

              let currentFrame = self.currentFrame, // Use the stored frame corresponding to the classification 

              let depthData = currentFrame.sceneDepth, 

              let camIntrinsics = self.cameraIntrinsics, 

              let camResolution = self.cameraResolution else { 

            // Create a result even if some data is missing, but indicate issues 

            let result = EnhancedScanResult( 

                annotatedImage: self.annotatedImage ?? UIImage(), // Use current annotated or raw image 

                woundType: detection.label, 

                confidence: detection.confidence, 

                distance: nil, // Mark as nil or error value 

                estimatedArea: nil, 

                severity: "Unknown (incomplete data)", 

                woundBoundingBox: detection.boundingBox 

            ) 

            completeScan(.success(result)) // Or failure if essential data is missing 

            return 

        } 

 

        // 1. Get average distance to the wound using the depth map 

        let averageDistance = getAverageDepthForBoundingBox( 

            detection.boundingBox, // Normalized 0-1 coordinates from classifier 

            depthMap: depthData.depthMap, 

            depthConfidenceMap: depthData.confidenceMap, // Use confidence if available 

            camera: currentFrame.camera // For unprojection if needed 

        ) 

 

        // 2. Calculate Physical Area 

        var physicalArea: Float? = nil 

        if let dist = averageDistance { 

            physicalArea = calculatePhysicalAreaFromDetection( 

                detection: detection, 

                distanceToWound: dist, 

                cameraIntrinsics: camIntrinsics, 



                cameraImageResolution: camResolution // Original image resolution for normalization reference 

            ) 

        } 

         

        // 3. Assess Severity 

        let severity = assessSeverity(area: physicalArea, type: detection.label) 

 

        // 4. Draw final annotations (including area, distance if available) on the image 

        if let baseImage = self.annotatedImage { // Start with the captured image 

            self.annotatedImage = drawEnhancedAnnotations(on: baseImage, detection: detection, distance: averageDistance, area: phy

sicalArea) 

        } 

         

        let finalResult = EnhancedScanResult( 

            annotatedImage: self.annotatedImage ?? UIImage(), // Should be the fully annotated one 

            woundType: detection.label, 

            confidence: detection.confidence, 

            distance: averageDistance, 

            estimatedArea: physicalArea, 

            severity: severity, 

            woundBoundingBox: detection.boundingBox 

        ) 

        completeScan(.success(finalResult)) 

    } 

 

    // Placeholder: Get average depth for the wound's bounding box 

    private func getAverageDepthForBoundingBox(_ normalizedBoundingBox: CGRect, depthMap: CVPixelBuffer, depthConfidenc

eMap: CVPixelBuffer?, camera: ARCamera) -> Float? { 

        // This is a complex function: 

        // 1. Convert normalized bounding box to pixel coordinates in the depth map. 

        // 2. Iterate pixels in this region of the depth map. 

        // 3. Read depth values (Float32 for sceneDepth, meters). 

        // 4. Optionally filter by confidence from depthConfidenceMap (if available and sceneDepth). 

        // 5. Average valid depth values. Handle NaNs or very large/small values. 

        // 6. Unprojection might be needed for more accuracy if the wound surface is not perpendicular to camera. 

         

        // Simplified placeholder: 

        // Get depth at the center of the bounding box 

        let depthWidth = CVPixelBufferGetWidth(depthMap) 

        let depthHeight = CVPixelBufferGetHeight(depthMap) 

 

        let centerX = Int(normalizedBoundingBox.midX * CGFloat(depthWidth)) 

        let centerY = Int(normalizedBoundingBox.midY * CGFloat(depthHeight)) 

 

        guard centerX >= 0 && centerX < depthWidth && centerY >= 0 && centerY < depthHeight else { return nil } 

 

        CVPixelBufferLockBaseAddress(depthMap, .readOnly) 

        defer { CVPixelBufferUnlockBaseAddress(depthMap, .readOnly) } 

         

        if let baseAddress = CVPixelBufferGetBaseAddress(depthMap) { 

            let bytesPerRow = CVPixelBufferGetBytesPerRow(depthMap) 



            let buffer = baseAddress.assumingMemoryBound(to: Float32.self) 

            let depthValue = buffer[centerY * (bytesPerRow / MemoryLayout<Float32>.stride) + centerX] 

            return depthValue.isNaN ? nil : depthValue 

        } 

        return nil // Placeholder 

    } 

     

    // Placeholder: Calculate physical area 

    private func calculatePhysicalAreaFromDetection(detection: WoundDetection, distanceToWound: Float, cameraIntrinsics: simd_

float3x3, cameraImageResolution: CGSize) -> Float? { 

        // This uses pinhole camera model principles. 

        // Assumes boundingBox in detection is normalized to cameraImageResolution. 

        let fx = cameraIntrinsics[0,0] // Focal length in x (pixels) 

        let fy = cameraIntrinsics[1,1] // Focal length in y (pixels) 

 

        // Denormalize bounding box width and height to pixels on the image sensor 

        let boxWidthInPixels = detection.boundingBox.width * cameraImageResolution.width 

        let boxHeightInPixels = detection.boundingBox.height * cameraImageResolution.height 

         

        // Physical width = (BoxWidthInPixels / fx) * DistanceToWound 

        // Physical height = (BoxHeightInPixels / fy) * DistanceToWound 

        let physicalWidth = (Float(boxWidthInPixels) / fx) * distanceToWound // meters 

        let physicalHeight = (Float(boxHeightInPixels) / fy) * distanceToWound // meters 

         

        let areaInSquareMeters = physicalWidth * physicalHeight 

        return areaInSquareMeters * 10000 // Convert m^2 to cm^2 

    } 

 

    // Placeholder: Assess severity 

    private func assessSeverity(area: Float?, type: String) -> String { 

        guard let area = area else { return "Unknown (area not calculated)" } 

        // Example logic (cm^2) 

        if area > 50.0 { return "High" } 

        if area > 10.0 { return "Medium" } 

        if area > 0 { return "Low" } 

        return "Not classified" 

    } 

 

    private func drawEnhancedAnnotations(on image: UIImage, detection: WoundDetection, distance: Float?, area: Float?) -> UIIma

ge { 

        UIGraphicsBeginImageContextWithOptions(image.size, false, image.scale) 

        image.draw(at: .zero) 

        guard let context = UIGraphicsGetCurrentContext() else { 

            UIGraphicsEndImageContext() 

            return image 

        } 

 

        let imageSize = image.size 

        let boundingBox = detection.boundingBox // Normalized 

        let rect = CGRect( 

            x: boundingBox.origin.x * imageSize.width, 



            y: boundingBox.origin.y * imageSize.height, 

            width: boundingBox.width * imageSize.width, 

            height: boundingBox.height * imageSize.height 

        ) 

 

        context.setStrokeColor(UIColor.cyan.cgColor) // Different color for enhanced scan 

        context.setLineWidth(max(imageSize.width / 180, 2.5)) 

        context.stroke(rect) 

 

        var textLines: [String] = [] 

        textLines.append(String(format: "%@: %.2f", detection.label, detection.confidence)) 

        if let d = distance { textLines.append(String(format: "Dist: %.2f m", d)) } 

        if let a = area { textLines.append(String(format: "Area: %.1f cm²", a)) } 

         

        let text = textLines.joined(separator: "\n") 

         

        let attributes: [NSAttributedString.Key: Any] = [ 

            .font: UIFont.systemFont(ofSize: max(imageSize.width / 45, 10.0)), 

            .foregroundColor: UIColor.black, 

            .backgroundColor: UIColor.cyan.withAlphaComponent(0.7) 

        ] 

         

        let paragraphStyle = NSMutableParagraphStyle() 

        paragraphStyle.alignment = .left 

        let finalAttributes = attributes.merging([.paragraphStyle: paragraphStyle], uniquingKeysWith: { (current, _) in current }) 

 

        let textSize = text.boundingRect(with: CGSize(width: imageSize.width, height: .greatestFiniteMagnitude), 

                                         options: .usesLineFragmentOrigin, 

                                         attributes: finalAttributes, 

                                         context: nil).size 

                                          

        var textRectY = rect.origin.y - textSize.height - 5 

        if textRectY < 0 { textRectY = rect.origin.y + rect.height + 5 } // Position below if no space above 

        if textRectY + textSize.height > imageSize.height { textRectY = imageSize.height - textSize.height - 5} // Ensure it's within b

ounds 

 

        let textRect = CGRect(x: rect.origin.x, y: textRectY, width: textSize.width + 10, height: textSize.height + 5) 

         

        // Draw background for text 

        let backgroundPath = UIBezierPath(roundedRect: textRect, cornerRadius: 5) 

        (finalAttributes[.backgroundColor] as? UIColor)?.setFill() 

        backgroundPath.fill() 

         

        // Draw text 

        (text as NSString).draw(in: textRect.insetBy(dx: 5, dy: 2.5), withAttributes: finalAttributes) 

         

        let annotatedImage = UIGraphicsGetImageFromCurrentImageContext() 

        UIGraphicsEndImageContext() 

        return annotatedImage ?? image 



    } 

     

    private func completeScan(_ result: Result<EnhancedScanResult, Error>) { 

        self.isScanning = false 

        arSession?.pause() 

        // arSession = nil // Keep session if you might restart, or nil out if completely done 

        scanCompletion?(result) 

        scanCompletion = nil // Avoid multiple calls 

    } 

 

    func stopScan() { 

        if self.isScanning { 

             completeScan(.failure(ScanError.cancelled)) // Or a success with partial data if applicable 

        } 

    } 

     

    // Define specific error types 

    enum ScanError: Error, LocalizedError { 

        case arNotSupported 

        case lidarNotSupported 

        case sceneDepthNotSupported 

        case arSessionFailed(Error) 

        case noFrameAvailable 

        case noImageInFrame 

        case imageConversionFailed 

        case classificationFailed 

        case depthProcessingFailed 

        case cancelled 

         

        var errorDescription: String? { 

            switch self { 

            case .arNotSupported: return "ARKit is not supported on this device." 

            case .lidarNotSupported: return "LiDAR sensor is not available or supported." 

            case .sceneDepthNotSupported: return "Scene depth is not supported on this device/OS version." 

            case .arSessionFailed(let err): return "AR session failed: \(err.localizedDescription)" 

            case .noFrameAvailable: return "No AR frame was available for processing." 

            case .noImageInFrame: return "The AR frame contained no image data." 

            case .imageConversionFailed: return "Failed to convert AR frame image." 

            case .classificationFailed: return "Wound classification failed." 

            case .depthProcessingFailed: return "Failed to process depth data for measurements." 

            case .cancelled: return "Scan was cancelled by the user." 

            } 

        } 

    } 

} 

 

// Define EnhancedScanResult struct (as referenced above and potentially in ContentView) 

// This struct holds all the data gathered from an enhanced scan. 

// struct EnhancedScanResult { 

//     let annotatedImage: UIImage        // Image with visual annotations (bounding box, measurements) 

//     let woundType: String              // Classified type of the wound (e.g., "Abrasion") 



//     let confidence: Float              // Confidence score from the classifier (0.0 to 1.0) 

//     let distance: Float?               // Estimated distance to the wound in meters (e.g., from LiDAR/depth map) 

//     let estimatedArea: Float?          // Estimated area of the wound in square centimeters 

//     let severity: String               // Assessed severity (e.g., "Low", "Medium", "High") 

//     let woundBoundingBox: CGRect?      // Normalized coordinates of the detected wound on the original image 

//     // You might also include: 

//     // let timestamp: Date 

//     // let depthDataUsed: Bool // To indicate if measurements are depth-assisted 

// } 

// 

// And ensure WoundDetection (if used by classifier) is defined as shown in X.1. 

``` 


X.3 AI Consultation (e-Consult)

This function allows users to have a more in-depth conversation with the AI about the current wound after viewing the scan results.

Process Overview:

1. **User Operation (`ResultView` or `EnhancedScanResultView`)**:

 * User taps the "e-Consult" button on the result card.

 * The `showingChat` state of the corresponding view becomes `true`.

2. **Present Chat View (`ResultView`/`EnhancedScanResultView` -> `ChatView`)**:

 * Presents `ChatView` using the `.sheet` modifier.

 * Passes the current `woundType`, `deepseekService` instance, and the `$showingChat` binding to `ChatView`.

 * Injects `languageManager` at the same time.

3. **Initialize Chat (`ChatView`)**:

 * `ChatView.onAppear`:

 * Generates an initial prompt message based on the incoming `woundType` (e.g., "My wound type is XX, please give me det

ailed treatment advice.").

 * Calls `sendInitialMessage()`.

4. **Send Message (`ChatView` -> `DeepseekService`)**:

 * `ChatView.sendMessage()` or `sendInitialMessage()`:

 * Adds the user input or initial message to the local `messages` list.

 * Sets `isLoading = true`.

 * Calls `deepseekService.sendChatMessage(message: ..., language: languageManager.currentLanguage, ...)`.

 * `DeepseekService.sendChatMessage()`:

 * Adds the user message to the internal `chatHistory`.

 * Constructs a request body containing the **complete chat history** and a system prompt with **language instructions*

*.

 * Sends a request to the Deepseek API.

5. **Receive and Display AI Reply (`DeepseekService` -> `ChatView`)**:

 * Callback of `DeepseekService.sendChatMessage()`:

 * If successful, adds the AI's reply to `chatHistory`.

 * Returns the AI's reply via `completion`.

 * `ChatView` receives the AI reply:

 * Sets `isLoading = false`.

 * Adds the AI reply to the local `messages` list.

 * `ChatBubble` is responsible for rendering the message; if the AI reply contains Markdown, the `Text` view will attempt to

render it.

6. **User Interaction (`ChatView`)**:

 * Users can type new questions in the input box and send them, repeating steps 4 and 5.

 * The chat card height can be adjusted by sliding, or the chat can be closed by tapping the close button.

Key Code Snippets (Detailed Illustration):

The following Swift code provides a more detailed illustration of the `ChatView` structure and its interaction with the `DeepseekSe

rvice` for handling the AI consultation. It includes state management for messages, user input, UI elements for displaying the chat,

and logic for sending/receiving messages. This example uses SwiftUI.


```swift 

// ChatView.swift 

import SwiftUI 

 

// Define ChatMessage and ChatBubble (can be in separate files or same file if small) 

struct ChatMessage: Identifiable, Equatable { // Equatable for .onChange 

    let id = UUID() 

    let text: String 

    let isUser: Bool 

    var isLoadingIndicator: Bool = false // To show a "thinking..." bubble for AI 

    // let timestamp: Date = Date() // Optional for sorting or display 

} 

 

struct ChatBubble: View { 

    let message: ChatMessage 

     

    var body: some View { 

        HStack { 

            if message.isUser { Spacer(minLength: 20) } // Push user messages to the right 

             

            if message.isLoadingIndicator { 

                ProgressView() 

                    .padding(10) 

                    .background(Color(UIColor.systemGray5)) 

                    .clipShape(RoundedRectangle(cornerRadius: 10)) 

            } else { 

                Text(message.text) 

                    .padding(12) 

                    .background(message.isUser ? Color.blue.opacity(0.9) : Color(UIColor.systemGray4)) 

                    .foregroundColor(message.isUser ? .white : .primary) 

                    .clipShape(RoundedRectangle(cornerRadius: 12)) 

                    .textSelection(.enabled) // Allow copying text from bubbles 

            } 

             

            if !message.isUser { Spacer(minLength: 20) } // Push AI messages to the left 

        } 

        .padding(.horizontal, 10) 

        .padding(.vertical, 4) 

    } 

} 

 



struct ChatView: View { 

    @Binding var showingChat: Bool // To dismiss the sheet 

    var woundType: String          // Passed from the result view 

    @ObservedObject var deepseekService: DeepseekService // Assumed to be an ObservableObject 

    @EnvironmentObject var languageManager: LanguageManager // For language settings 

 

    @State private var userInput: String = "" 

    @State private var messages: [ChatMessage] = [] 

    @FocusState private var isTextFieldFocused: Bool // To manage keyboard 

 

    var body: some View { 

        NavigationView { 

            VStack(spacing: 0) { 

                ScrollViewReader { scrollViewProxy in 

                    ScrollView { 

                        LazyVStack(spacing: 8) { 

                            ForEach(messages) { msg in 

                                ChatBubble(message: msg) 

                                    .id(msg.id) // Assign ID for scrolling 

                            } 

                        } 

                        .padding(.top, 10) 

                    } 

                    .onChange(of: messages) { _ in // Use Equatable ChatMessage for reliable onChange 

                        // Scroll to the bottom for new messages 

                        if let lastMessage = messages.last { 

                            withAnimation { 

                                scrollViewProxy.scrollTo(lastMessage.id, anchor: .bottom) 

                            } 

                        } 

                    } 

                    .onTapGesture { 

                        isTextFieldFocused = false // Dismiss keyboard on tap outside 

                    } 

                } 

 

                // Input area 

                HStack(spacing: 12) { 

                    TextField("Ask about \(woundType)...", text: $userInput, axis: .vertical) // Allow multi-line input 

                        .lineLimit(1...5) // Limit lines for text field 

                        .padding(EdgeInsets(top: 8, leading: 12, bottom: 8, trailing: 12)) 

                        .background(Color(UIColor.systemGray6)) 

                        .clipShape(RoundedRectangle(cornerRadius: 20)) 

                        .focused($isTextFieldFocused) 

                        .onSubmit(sendMessage) // Send on return key 

 

                    Button(action: sendMessage) { 

                        Image(systemName: "arrow.up.circle.fill") 

                            .resizable() 

                            .frame(width: 32, height: 32) 

                            .foregroundColor(userInput.trimmingCharacters(in: .whitespacesAndNewlines).isEmpty ? .gray : .blue) 



                    } 

                    .disabled(userInput.trimmingCharacters(in: .whitespacesAndNewlines).isEmpty || deepseekService.isLoading) 

                } 

                .padding() 

                .background(.thinMaterial) // Material background for input area 

            } 

            .navigationTitle("AI Consultation") 

            .navigationBarTitleDisplayMode(.inline) 

            .toolbar { 

                ToolbarItem(placement: .navigationBarTrailing) { 

                    Button("Done") { 

                        showingChat = false 

                    } 

                } 

            } 

            .onAppear(perform: sendInitialMessage) 

            .alert("Error", isPresented: $deepseekService.hasError, presenting: deepseekService.errorMessage) { _ in 

                 Button("OK") { deepseekService.clearError() } 

            } message: { errorMessage in 

                 Text(errorMessage) 

            } 

        } 

    } 

 

    private func sendInitialMessage() { 

        // Only send if messages are empty (e.g., first time view appears) 

        guard messages.isEmpty else { return } 

 

        let initialPrompt = "I have a \(woundType). Can you provide detailed treatment advice, potential complications to watch for, a

nd when I should see a doctor?" 

        let initialMessage = ChatMessage(text: initialPrompt, isUser: true) 

        messages.append(initialMessage) 

         

        // Show AI thinking indicator 

        let thinkingMessageId = UUID() // Need a stable ID if we want to remove/replace it 

        messages.append(ChatMessage(id: thinkingMessageId, text: "", isUser: false, isLoadingIndicator: true)) 

 

        // Construct history for the service 

        let historyForService = messages.filter { !$0.isLoadingIndicator } // Don't send thinking bubble as history 

 

        deepseekService.sendChatMessage( 

            message: initialPrompt, // The service might just use the latest message + history 

            language: languageManager.currentLanguage.rawValue, // Assuming Language enum has rawValue: String 

            history: historyForService.map { $0.text } // Or a more structured history object 

        ) { replyText, error in 

            // Remove thinking indicator 

            messages.removeAll { $0.id == thinkingMessageId && $0.isLoadingIndicator } 

 

            if let error = error { 

                let errorMessage = ChatMessage(text: "Sorry, I encountered an error: \(error.localizedDescription)", isUser: false) 

                messages.append(errorMessage) 



                // Optionally set deepseekService.hasError and errorMessage here if not handled by service 

                return 

            } 

            if let replyText = replyText, !replyText.isEmpty { 

                let aiMessage = ChatMessage(text: replyText, isUser: false) 

                messages.append(aiMessage) 

            } else if error == nil { // No error but empty reply 

                 let emptyReplyMessage = ChatMessage(text: "I didn't receive a response. Please try asking again.", isUser: false) 

                messages.append(emptyReplyMessage) 

            } 

        } 

    } 

 

    private func sendMessage() { 

        let trimmedInput = userInput.trimmingCharacters(in: .whitespacesAndNewlines) 

        guard !trimmedInput.isEmpty else { return } 

         

        let userMessage = ChatMessage(text: trimmedInput, isUser: true) 

        messages.append(userMessage) 

        let textToSend = userInput 

        userInput = "" // Clear input field immediately 

 

        // Show AI thinking indicator 

        let thinkingMessageId = UUID() 

        messages.append(ChatMessage(id: thinkingMessageId, text: "", isUser: false, isLoadingIndicator: true)) 

         

        let historyForService = messages.filter { !$0.isLoadingIndicator && $0.id != thinkingMessageId } 

 

        deepseekService.sendChatMessage( 

            message: textToSend, 

            language: languageManager.currentLanguage.rawValue, 

            history: historyForService.map { $0.text } // Example history format 

        ) { replyText, error in 

            messages.removeAll { $0.id == thinkingMessageId && $0.isLoadingIndicator } 

 

            if let error = error { 

                let errorMessage = ChatMessage(text: "Error: \(error.localizedDescription)", isUser: false) 

                messages.append(errorMessage) 

                return 

            } 

            if let replyText = replyText, !replyText.isEmpty { 

                let aiMessage = ChatMessage(text: replyText, isUser: false) 

                messages.append(aiMessage) 

            } else if error == nil { 

                 let emptyReplyMessage = ChatMessage(text: "I received an empty response. Could you rephrase or try again?", isUser: 

false) 

                messages.append(emptyReplyMessage) 

            } 

        } 

        isTextFieldFocused = true // Keep keyboard focus after sending, or set to false to dismiss 



    } 

} 

 

// Assuming DeepseekService is an ObservableObject like this: 

// class DeepseekService: ObservableObject { 

//     @Published var isLoading: Bool = false 

//     @Published var hasError: Bool = false 

//     @Published var errorMessage: String? = nil 

// 

//     func sendChatMessage(message: String, language: String, history: [String], completion: @escaping (String?, Error?) -> Void) 

{ 

//         self.isLoading = true 

//         self.clearError() 

//         // ... (API call logic) ... 

//         // On completion: 

//         // self.isLoading = false 

//         // if error { self.hasError = true; self.errorMessage = error.localizedDescription } 

//         // completion(reply, error) 

//     } 

//     func clearError() { 

//         self.hasError = false 

//         self.errorMessage = nil 

//     } 

// } 

// 

// Assuming LanguageManager and Language enum: 

// class LanguageManager: ObservableObject { 

//     @Published var currentLanguage: Language = .english 

// } 

// enum Language: String { case english = "en", chinese = "zh" /* ... other languages */ } 

 

``` 


IV. Project Implementation Process

(a) Dataset

The wound classification test dataset comprises 7,686 independently collected wound image

s, encompassing five distinct categories: normal skin, lacerations, incisions, abrasions, and h

ematomas. These images simulate authentic clinical scenarios, incorporating variations in lig

hting conditions, background noise, and diverse imaging angles to enhance model robustnes

s. Following the implementation of data augmentation techniques, the dataset was significan

tly expanded from the original 7,668 images to 45,271 images, substantially enhancing the

model's feature extraction capabilities and overall performance during the training process.

(b) Model Training

WoundCare model, based on the YOLO11l architecture, was trained on the NVIDIA

A100 Tensor Core GPU platform. This training process utilized 7,686 meticulously a

nnotated medical image samples and underwent 100 training epoch iterations, resulti

ng in significant enhancement of wound detection accuracy.

The model training parameters were configured as follows:

• Batch size (batch): -1 (Auto-batch sizing based on GPU memory capacity)

• Cache: None

• Device: None

• Training epochs: 100

• Image size (imgsz): 640

• Patience value: 100

• Time: None

The NVIDIA A100 platform was selected for its superior deep learning performance c

apabilities, which according to industry benchmarks, provides significantly faster train

ing speeds compared to previous generation hardware. The auto-batch sizing param

eter (-1) allowed the system to automatically determine the optimal batch size based

on the available GPU resources, maximizing computational efficiency while preventin

g memory overflow issues.

(c) Application Deployment

To ensure optimal performance and user experience across both iOS and Android mobile op

erating systems, our team implemented a platform-native development strategy. Given the si

gnificant differences between iOS and Android system architectures, development kits (SDK

s), and application programming interfaces (APIs)—such as Apple's Core ML versus the pre

dominantly used TensorFlow Lite on Android—platform-specific development became essen

tial. Specifically, the iOS application was developed using Apple's official Swift programming

language and native API suite, while the Android application utilized Google's supported Kotl

in programming language.

To further enhance the user experience, the application integrates the Deepseek large langu

age model via API. After the system identifies a wound type through the application, this info

rmation is sent as a request to the Deepseek API to generate relevant professional wound c

are recommendations and content.

For the iOS platform, we developed a specialized wound area and severity assessment feat

ure based on LiDAR technology. This functionality utilizes the LiDAR sensor built into select i

Phone and iPad devices, in conjunction with the system-level ARKit framework, to perform hi

gh-precision distance detection. By combining the depth data with the wound bounding box

dimensions detected by the YOLO model in the image, the system can calculate the estimat

ed wound area in the physical world, thereby assisting in determining wound severity.

V. Project Outcomes

(a) Model Performance

The data in the chart below represents the model's overall performance, where the

X-axis indicatesthe total epochs of the model. An epoch refers to the state in the

model training process where the algorithm has completely used every data point in

the dataset. The Y-axis represents the maximum values.

mAP50 is the mean Average Precision calculated using a threshold value of 0.5 to m
easure the overlap degree between detection boxes and label boxes.

Recall is a metric that measures the model's prediction capability, particularly i
ts ability to identify relevant instances.

Precision is the ratio of correctly predicted positive samples to the total number

of samples predicted as positive.

"Box loss" typically refers to the overall loss of boundary boxes, encompassing ce

nter position (x,y) and size (width, height). In YOLO11, this is usually calculate
d using IoU (Intersection over Union)-based loss functions, such as CIoU or SIoU,

to measure the degree of overlap between predicted bounding boxes and ground truth
bounding boxes. This component of the loss function ensures the model can correctl

y localize and adjust the size of objects.

"Class loss" refers to the loss component associated with classification, which is

responsible for predicting the category to which each detected object belongs. Thi

s loss is typically calculated using cross-entropy loss, measuring the difference

between predicted class probabilities and actual class labels. This component is c

rucial for identifying different types of objects in images (such as cars, pedestr

ians, etc.).

"dfl loss" refers to Distribution Focal Loss, which is used in YOLO11 for precise

prediction of bounding box center coordinates. Unlike traditional methods, DFL con

siders the potential distribution of center positions, particularly addressing sce

narios involving small objects or size variations, helping the model better handle

challenging detection situations. This is an advanced loss function designed to im

prove the prediction accuracy of center positions.

(b) Application Program

iOS Version Overall Interface

Based on the current trends in wound assessment applications, the iOS version of our application feat

ures a comprehensive user interface designed for optimal clinical functionality while maintaining user-f

riendly navigation. The interface incorporates intuitive design elements similar to leading medical appli

cations in the wound care domain, with specialized components for wound image capture, analysis, a

nd treatment recommendation display.

The application interface prioritizes accessibility and clear information presentation, following establish

ed patterns in successful medical imaging applications. Unlike many existing solutions that focus excl

usively on healthcare practitioners, our interface is designed to be accessible to both medical professi

onals and general users, particularly in situations where immediate professional care may not be avail

able.

The Android main interface design aims to provide an intuitive and efficient user experience. The main

page features a clear layout of four core functional module buttons to accommodate diverse user nee

ds.

First, the "Photo Scan Detection" button serves as the program's core functionality, enabling users to

perform real-time wound detection through live camera scanning.

Second, the "Self-Detection" button innovatively employs a questionnaire format combined with gene

rative artificial intelligence technology to guide users through preliminary wound condition self-assess

ment.

Finally, the "Upload Photo Detection" button facilitates convenient upload of existing wound photogra

phs for analysis.

The overall program interface design maintains consistency with the iOS version, emphasizing usabilit

y, user-friendliness, and rapid response capabilities, ensuring users can conveniently and efficiently o

perate all detection functions.

VI. Project Testing Results
Wound Classification Accuracy: Ensuring that the YOLO11 model achieves an average

accuracy rate of 80% or higher for wound type identification (including laceration

s, incisions, abrasions, hematomas, etc.) on independent test datasets.

Area Measurement Precision: Validating that wound area measurement error rates re

main below 5% on iOS devices equipped with LiDAR sensors.

Application Response Speed: Confirming that wound identification and treatment re

commendation output times do not exceed 2 seconds on both iOS and Android platform

s.

User Experience: Evaluating application stability in offline mode, as well as the

practicality of the DeepSeek-integrated wound assessment and chatroom functionalit

y.

VII. Conclusion and Future Prospects
With the rapid advancement of technology, particularly in artificial intelligence,

we aspire to integrate technology with healthcare through this emergency medical a

ssistance device. Our goal is to efficiently and accurately address injuries that

occur in people's daily lives by providing real-time medical aid, thereby minimizi

ng wound deterioration and the probability of secondary injuries to the greatest e

xtent possible. We aim to create a safe environment that safeguards everyone's saf

ety and health, with broader applications anticipated in the future.

We look forward to further enhancing the system's accuracy and practicality to bet

ter serve the public and reduce health risks resulting from improper wound managem

ent. This project not only demonstrates the potential of artificial intelligence i

n the medical field but also emphasizes the critical importance of combining techn

ology with healthcare. Our ultimate objective is to create a safer and healthier l

iving environment for everyone.

The integration of advanced AI algorithms with accessible mobile technology repres

ents a significant step toward democratizing healthcare access, particularly in un

derserved areas where immediate professional medical attention may not be readily

available. As we continue to refine and expand this technology, we envision a futu

re where intelligent wound assessment becomes a standard component of first aid ca

re, ultimately contributing to improved health outcomes and reduced healthcare dis

parities globally.

IX. Appendix

(a) Keywords

Core Project Attributes:

• Fast/Rapid

• Convenient

• Easy-to-use

• Accurate

• Safe/Safety

Technology and AI Components:

• Artificial Intelligence (AI)

• Image Recognition

• Wound Recognition/Identification

• Wound Treatment/Management

• High-efficiency/Efficient

Application Domains:

• Health/Healthcare

• Technology

• Medical

• Safety

(b) References

[1] 老人跌倒造成的傷害及如何預防

https://www.airitilibrary.com/Article/Detail/P20210804002-N202311070009-00007

[2] 護理指導對外科傷口照護之成效探討

https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id%3D"099CTC05743052".&searc hmo

de=basic

[3] 傷口癒合機轉

http://tnha.com.tw/web/images/ckfinder/files/20171010104559.pdf

[4] 慢性傷口之評估與測量原則

https://www.airitilibrary.com/Publication/alDetailedMesh?docid=0047262x-200704-54-2-62-67-a

[5] 人工智能伤口评估方法及智能终端

https://patents.google.com/patent/CN111523508A/zh

[6] 慢性傷口智慧照護

https://www.moea.gov.tw/Mns/doit/videos/Videos.aspx?menu_id=13596&video_id=174

[7]二零一八年非故意損傷統計調查報告書 https://www.chp.gov.hk/files/pdf/report_of_unintentional_injury

_survey_2018_tc.pdf

[8]IWII-Consensus-2016_Chinese https://woundinfection-institute.com/wp-content/uploads/2021/06/IWII-Conse

nsus-2016_Chinese.pdf

[9] 非接觸式慢性傷口分析最新方法的系統概述

https://www.mdpi.com/2076-3417/10/21/7613

[10] 人工智能在傷口數字化成像評估中的應用与前景 https://d.wanfangdata.com.cn/periodical/Ch9QZXJp

b2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0EhJsYW56eXh5eGIyMDI0MDMwMTMaCGZ5amhjZndi

https://www.airitilibrary.com/Article/Detail/P20210804002-N202311070009-00007
http://tnha.com.tw/web/images/ckfinder/files/20171010104559.pdf
https://www.airitilibrary.com/Publication/alDetailedMesh?docid=0047262x-200704-54-2-62-67-a
https://patents.google.com/patent/CN111523508A/zh
https://www.moea.gov.tw/Mns/doit/videos/Videos.aspx?menu_id=13596&video_id=174
https://www.chp.gov.hk/files/pdf/report_of_unintentional_injury_survey_2018_tc.pdf
https://www.chp.gov.hk/files/pdf/report_of_unintentional_injury_survey_2018_tc.pdf
https://woundinfection-institute.com/wp-content/uploads/2021/06/IWII-Consensus-2016_Chinese.pdf
https://woundinfection-institute.com/wp-content/uploads/2021/06/IWII-Consensus-2016_Chinese.pdf
https://www.mdpi.com/2076-3417/10/21/7613
https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0EhJsYW56eXh5eGIyMDI0MDMwMTMaCGZ5amhjZndi
https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0EhJsYW56eXh5eGIyMDI0MDMwMTMaCGZ5amhjZndi

[11] 一種基于人工智能的術後切口愈合狀態識別系統 https://d.wanfangdata.com.cn/patent/ChhQYXRlbnR

OZXdTMjAyNDExMjIxNjU4MjISEENOMjAyNDExMDAwOTEyLjkaCHN1ZG10amMz

[12] 一種基于深度學習技術的傷口識別與面積测量系統及方法 https://d.wanfangdata.com.cn/patent/Chh

QYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyMjEwNTI2MzA5LjkaCHN1ZG10amMz

[13]YOLO11 与YOLOv8：详细比较

https://docs.ultralytics.com/zh/compare/yolo11-vs-yolov8/

https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyNDExMDAwOTEyLjkaCHN1ZG10amMz
https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyNDExMDAwOTEyLjkaCHN1ZG10amMz
https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyMjEwNTI2MzA5LjkaCHN1ZG10amMz
https://d.wanfangdata.com.cn/patent/ChhQYXRlbnROZXdTMjAyNDExMjIxNjU4MjISEENOMjAyMjEwNTI2MzA5LjkaCHN1ZG10amMz
https://docs.ultralytics.com/zh/compare/yolo11-vs-yolov8/

