
Quiet 
Zone
App prototype for noisy 
environment detection system 
with Machine Learning
Authors: Constantino-Daniel Boșcu, Mihai 
Alexandru Bizineche, Andrei-Daniel Boghici, 
Alexandru Dornea, Dominic Luca Ioan 
Category: 



Introduction

1.
METHODOLOGY FOR THE 
SYSTEM AND AI MODEL

Body
2.

ANDROID IMPLEMENTATION
- QUIET ZONE -

01.

INTRODUCTION AND
PROBLEM STATEMENT

Conclusion

02. 03.

OVERALL CONCLUSION OF 
THE PROJECT

04. 06.
3.

FUTURE DEVELOPMENT 
PLAN

Table of contents

II.

I. III.



I.Introduction
As a group of students who want to contribute to 

the well-being of the people, we entered this 
international competition to share our idea to the 
world and spread awareness about hearing, with 

the help of Machine Learning.



Problem 
statement
Some of the greatest “silent” threats of the 21st century are
those things that make our lives better or more exciting:
concerts on huge stadiums, heavy traffic of urban areas, and
the roaring of machines in industrial shops or building sites.
The result: hearing loss in younger and younger people.

Studies show that over 1 billion people are in danger of
losing their hearing abilities. The worst part is that most of
them will not do anything to preserve their hearing because
they do not realise the decreasing of their auditory
perception.



II.The architecture 
of the system

The program uses multiple scripts to work. Firstly,
using a subprocess loop, dB values from the microphone
mounted on the Arduino board is received through a txt
file. Following, the program will open another subprocess.
The user inputs their date of birth, calculating his age,
and when the program detects a change in the txt file
containing the decibel levels, it will calculate the
average value of them.

If it is over 80 decibels, the AI is trained for the
whole time this app open in the background and also, a
timer will start. If the data processed by the A.I. shows
that the environment is dangerous to your auditory
system, it will send an alert notification



The system Arduino implementation
We used Arduino components to make a

prototype, with simple hardware and efficient
software.

The code sets a pin constant for the
microphone, reads data from the sensor every
millisecond for a second, calculates minimum
and maximum, maps the value from an ARC
value to a decibel value, repeats the process
five times, and sends the result to a text file
every 6 seconds, with little to no error.

This information is then transmitted to the
AI, which provides the diagnostic for the data.



The Machine 
Learning Model
Our Machine Learning algorithm, to ensure precision in its

answers, uses the Random Forest Classifier framework for its
training. This technology is combination of Decision Trees,
Ensembled Learning, and Bootstrapping.

The data set we used for our algorithm has 4 parameters,
each consisting of 398 rows of data we created with the help
of NIOSH and OSHA. These 4 parameters are: age, noise level,
time exposure, and, of course, the labels. The 3 possible labels
are: "Negative", "Recommended", "Required". With this training,
we reached the outstanding accuracy of 94%.

The age is input by the user, the noise level is extracted
from the Arduino's txt file, and the time exposure is based on
the on amount of dB values in the file.

Precision Recall F1-score Support

Negative 0.98 1.00 0.99 44

Recommended 0.87 0.87 0.87 23

Required 0.94 0.91 0.92 33



The Front-End of
"Quiet Zone"
In the front end, the code will run in this exact order. 

When the app is opened, it asks for permission to use the 
microphone and to have access to sending notifications. 
Then, the app will require from the user their age, which 
will be sent to the AI. Quickly after, the app goes to its 

"home page", where a button is located at the center of it. 
When the button is pressed, the app starts listening and 
gives every few seconds a decibel reading that is shown 
on screen. Besides being shown, the reading is also given 
to the AI so it can make its predictions, and based on the 
user's age and the decibel reading, it will notify the user 
if its recommended or necessary to use ear plugs or leave 

their environment



Back-end, APIs, and 
the 24/7 server

Back-end

APIs and the 24/7 server
To store and run the back-end we used the 
pythonanywhere.com site that runs 24/7 server. To 
connect the scripts and files of the back-end with the 
front-end we got to use the REST APIs technology. 

Here's the only the modification done to the 
system is actually the removal of 
Model_starter.py, the one that checks for 
changes, and the system's paths



Future development plan 
of the project

• Optimize the battery usage and the overall 
efficiency of the program

• Build an implementation of the app on a smart 
watch

• Create a database for the user's info for further 
utilizations

• Integrate with other health and wellness apps
• Allow users to track historical data on sound 

levels in their environment, helping them to 
identify patterns and trends 

• Partner with hearing health professionals



III. Conclusion
To conclude, our product represents a safe

and natural way in which the users can protect
their hearing without resorting to hearing aids
that would cost them a fortune. In addition,
this would also raise awarness about the
problem, which can positively improve their
overall life because many people do not know
how grave and frequent this issue is around the
globe.

Aside from the reduced cost compared to
hearing aids, other advantages are that our
technology is compatible with any device that
includes a microphone and is extremely easy to
utilize.



Imagine a world in which one billion 
people can’t listen to music, or parents

who can’t hear their children speak 
their first words. One of the one billion 

people can be you, one of your 
colleagues, or your loved ones.

Use Quiet Zone.


	Slide 1: Quiet Zone App prototype for noisy environment detection system with Machine Learning
	Slide 2: Introduction
	Slide 3: I.Introduction
	Slide 4: Problem statement
	Slide 5: II.The architecture of the system
	Slide 6: The system Arduino implementation
	Slide 7: The Machine Learning Model
	Slide 8: The Front-End of "Quiet Zone"
	Slide 9: Back-end, APIs, and the 24/7 server
	Slide 10: Future development plan of the project
	Slide 11
	Slide 12

