the Ministry of Education and Science of Ukraine

SYNTHESIS OF IMIDAZO[2,1-b][1,3] THIAZINES AND DETERMINATION OF THEIR ANTI-INFLAMMATORY ACTIVITY

Mariana Irenyk

Nataliia Slyvka

Head of Department of Organic Chemistry and Pharmacy of

Lesya Ukrainka Volyn National University,

Candidate of chemical sciences

e-mail: irenykmariana12@gmail.com

phone: +380 99 31 57 404

National Center "Junior Academy of Sciences of Ukraine" under the auspices of UNESCO Project aim: to synthesize new functionalized derivatives of imidazo[2,1-b] thiazine.

Introduction

Since the 80s of the 20th century, the increased interest of scientists has focused on methods of synthesis and biological activity of imidazo[2,1-*b*]thiazine derivatives. Due to the fact that imidazothiazines exhibit various biological properties, namely antiviral, antitumor and others, this became a strong argument for the construction of new ones based on them.

trypanocidal antiviral antifungal antituberculosis

antiparasitic

Synthesis of 3-hydroxy(benzo)imidazo[2,1-b][1,3]thiazines

$$\begin{array}{c|c} R & & \\ & & \\ R^1 & & \\ & & \\ R^1 & & \\$$

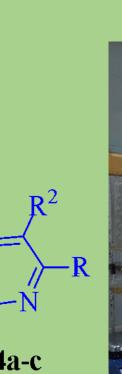
1a-c 2a-c (89-93%)

1,2 a R=H, b R=R¹=Ph, c RR¹=(CH=CH)₂

Synthesis of 6-[(pyridin-2-yl)oxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazines

2a-c

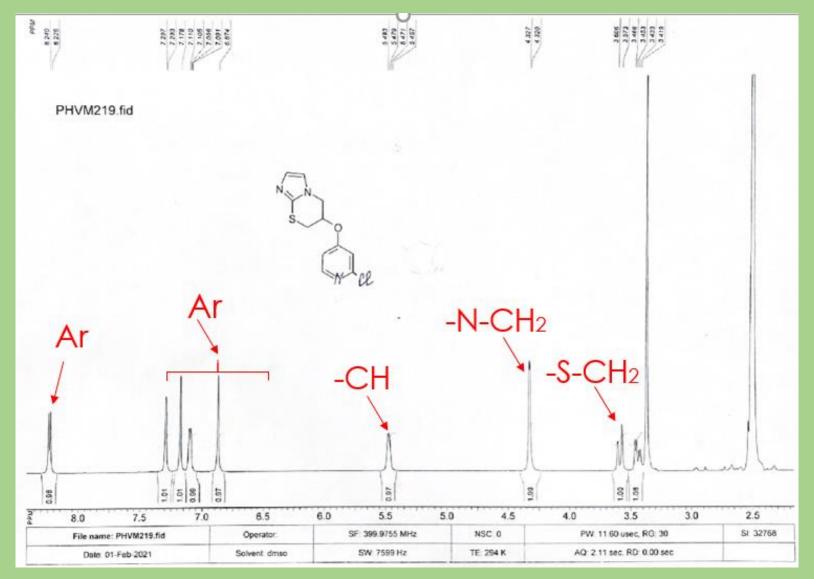
2 a R=H;

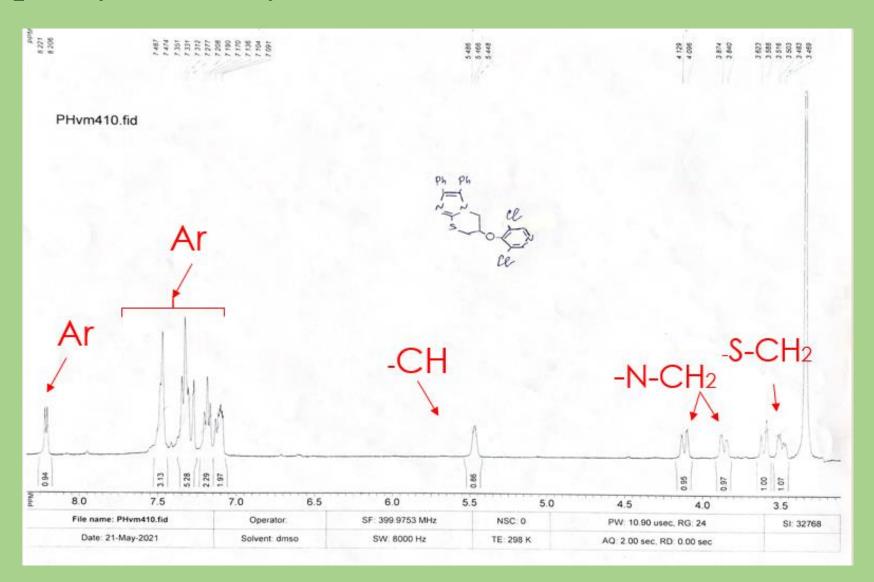

b R=Ph;

 $c RR = (CH = CH)_2$

3a, b

3 a $R^1=C1$, $R^2=R^3=H$;


b $R^1 = H$, $R^2 = R^3 = C1$

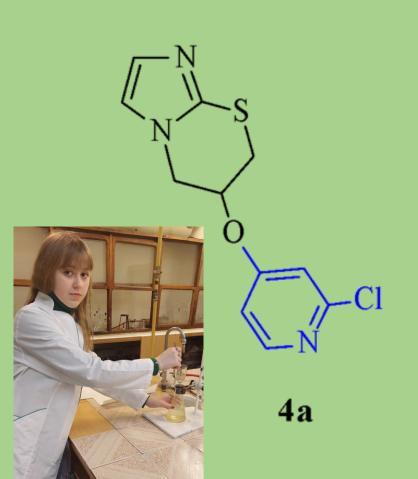

4a-c

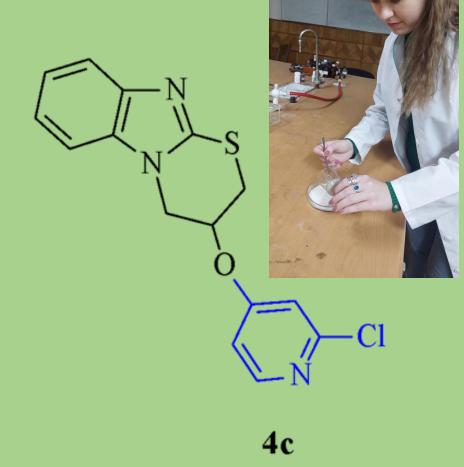
¹H NMR of 6-[(2-chloropyridin-4-yl)oxy]-6,7-dihydro-5H-imidazo[2,1-*b*][1,3]thiazine

¹ H NMR of 6-[(3,5-Dichloropyridin-4-yl)oxy]-2,3-diphenyl-6,7-dihydro-5H-imidazo[2,1-*b*][1,3]thiazine

Elemental analysis of compound synthesis

Compounds	Found, %	Anal. Calcd. %	M.p.°C
4a	C 49.10; H 3.80; N 15.77	C 49.35; H 3.76; N 15.69	124-125
4b	C 60.61; H 3.73; N 15.79	C 60.80; H 3.77; N 15.61.	108-110
4c	C 56.47; H 3.77; N 13.36.	C 56.69; H 3.81; N 13.22.	177-178





Determination of anti-inflammatory activity

Volume of paw edema (%) and percentage of inhibition inflammation (%)

Compounds/Reference drug, Doses	Rat hind limb volume increase, 4 hours, %	Inflammation inhibition, %
Carrageenin	122.9±10.8	-
4a	71.8±8.1	41.6
4b	99.1±10.8	19.4
4c	75.1±8.3	38.9
Diclofenac sodium	65.9±5.3	46.3

Prediction of acute toxicity

Parameters/Groups	Animals with ulcers	Ulcer degree, points
Intact control	0	0±0.00
4a	0	0±0.00
4c	0	0±0.00
Diclofenac sodium	6	1.6±0.2

Conclusions

- 1. The reaction of nucleophilic substitution of 3-hydroxy-3,4-dihydro-2H-(benzo)imidazo [2,1-b][1,3]thiazines with substituted halopyridines synthesized a series of (pyridin-4-yl)oxy(benzo)imidazo [2,1-b][1,3]thiazines was synthesized with yields of 63-72%.
- 2. The composition and structure of the obtained 6-arylidene derivatives of imidazo[2,1-*b*]thiazine were reliably confirmed by complex physicochemical analysis. In particular, the data of NMR ¹H-, ¹³C- and chromatography-mass spectrometry, as well as the data of elemental analysis.
- 3. Studies on anti-inflammatory activity have shown that imidazo[2,1-b]thiazine derivatives have a sufficiently high anti-inflammatory effect at low toxicometric parameters *in vivo*.
- 4. It was established that all compounds synthesized for the first time are non-toxic, when administered intraperitoneally.

Thank you for watching my presentation!